
ABSTRACT

ZHANG, QINGHUA. Polymorphic and Metamorphic Malware Detection. (Under the
direction of Professor Douglas S. Reeves.)

Software attacks are a serious problem. Conventional anti-malware software ex-

pects malicious software, malware, to contain fixed and known code. Malware writers have

devised methods of concealing or constantly changing their attacks to evade anti-malware

software. Two important recent techniques are polymorphism, which makes uses of code

encryption, and metamorphism, which uses a variety of code obfuscation techniques. This

dissertation presents three new techniques for detection of these malware.

The first technique is to recognize polymorphic malware that are encrypted and

that self-decrypt before launching the attacks in network traffic. We propose a new approach

that combines static analysis and instruction emulation techniques to more accurately iden-

tify the starting location and instructions of the decryption routine, which is characteristic

of such malware, even if self-modifying code is used. This method has been implemented

and tested on current polymorphic exploits, including ones generated by state-of-the-art

polymorphic engines. All exploits have been detected (i.e., a 100% detection rate), includ-

ing those for which the decryption routine is dynamically coded or self-modifying. The

method has also been tested on benign network traffic and Windows executables. The false

positive rates are approximately .0002% and .01% for these two categories, respectively.

Running time is approximately linear in the size of the network payload being analyzed and

is between 1 and 2 MB/s.

The second technique is a means of recognizing metamorphic malware which has a

transformed program image with equivalent or updated functionalities. We propose a new

approach that uses fully automated static analysis of executables to summarize and compare

program semantics, based primarily on the pattern of library or system functions which are

called. This method has been prototyped and evaluated using randomized benchmark

programs, instances of known malware program variants, and utility software available in

multiple releases. The results demonstrate three important capabilities of the proposed

method: (a) it does well at identifying metamorphic variants of common malware. (b)

it distinguishes easily between programs that are not related and, (c) it can identify and

detect program variations, or code reuse. Such variations can be due to the insertion of

malware (such as viruses) into the executable of a host program.



The third technique improves the applicability of a semantic metamorphic malware

detector which is the second technique of this dissertation. We propose an automated

approach to generate common malware behavior patterns for detection of metamorphic

malware or new malware instances. This method combines static analysis and data-mining

techniques. This method has been prototyped and evaluated on real world malicious bot

software and benign Windows programs. Through the experimental comparison with the

metamorphic malware detector, this method results in an about 80% reduction in semantic

pattern population to detect known and new malware instances. It is more robust to a junk

behavior pollution attack than the malware detector is. A set of experiments was performed

to test the quality of the common behavior patterns which were generated with different

parameter configurations. Two optimized common behavior patterns were obtained. The

corresponding detection rates and true false positive rates are 94%, 8.3%, and 78%, 0.32%

respectively.
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Chapter 1

Introduction

The Internet plays an essential role in all areas of society, from the economy

to the military to the government. The Internet now connects hundreds of millions of

computers, which are vulnerable to attacks by malicious software, or malware. Malware

exploits vulnerabilities or flaws in software systems and critical applications to intentionally

disrupt their use, or to subvert them for other purposes. The rapid increase in malware

threatens not only individual computers, but the availability of the Internet itself.

Three trends, including the growth of the Internet connectivity, system extensi-

bility and complexity, contribute to the growth and evolution of this problem [3]. The

mono-culture nature of current hardware and software makes it possible to exploit a single

vulnerability which will compromise a large number of host computers. The increasing

connectivity of computers via high-speed Internet connections increases the visibility of

vulnerable systems and exposes them to the attacks.

A typical example of malware is an Internet worm, which is self-propagating code.

Worms use one or more remote exploits to compromise a vulnerable victim host via the

Internet. Having done this, the worm launches an identical attack on other vulnerable

hosts reachable by the Internet. The automated nature of worms makes them virulent

and destructive. According to Computer Economics [4], the estimated worldwide damages

caused by three well-known worms in 2001 (Code Red, Nimda and Slammer), exceeded $4

billion. The financial loss caused by malware has been as high as $13.3 billion in 2006 [4].

Software extensibility and rapid evolution is a double-edged sword. On the positive side, it

satisfies the demands of customers for new features. On the negative side, rapidly shipped

but incompletely tested new software releases tend to contain more vulnerabilities that



2

can be exploited. The increase in software complexity also increases the potential number

of vulnerabilities and flaws. Fixing these overlooked flaws has led to a constant cycle of

necessary software patching; an un-patched system is an easy target for malware.

There are many types of malware besides Internet worms. Examples include

viruses, trojans, rootkits, spyware, and spam. Different instances of malware have a vari-

ety of penetration methods, malicious purposes, and effects [5]. A malware instance can

be transported through remote exploit, by e-mail, over a peer-to-peer network, or through

removable media [6]. It can also be automatically downloaded and installed by visiting a

web site containing exploit code [7]. The spread of malware instances can be extremely fast,

with some infections requiring only a few seconds [8]. As one illustration of the problem,

in a study published in 2004 the average survival time for an unpatched Windows machine

connected to the Internet was about 20 minutes [9].

Nowadays the goals of those creating and unleashing malware have shifted, from

simple vandalism and craving for recognition, to financial gain [10, 11, 12]. Malicious at-

tacks have become more organized and purposefully directed. Botnets in particular confirm

this trend. Botnets are armies of remotely-control computers, or zombies. These computers

are compromised and then infected with software robots, or bots, that allow the zombie

computers to be controlled remotely through established command and control channels

(C&C). Collectively, under the control of C&C servers, botnets become powerful and effec-

tive slave computing assets that can be rented for illegal activities. Such activities include

phishing attacks, installing backdoors or rootkits on host systems to obtain private informa-

tion, sending spam for advertising, and launching large scale distributed denial-of-service

(DDoS) attacks [13, 14, 15].

In summary, malware has become a major threat, and there is substantial financial

incentive for such malware to continue to develop. It is necessary and important to fight

this trend.

1.1 Motivation

This dissertation focuses on the research problem of malware detection, which is

generally considered as the first step in the malware defense. With proper identification of

malware, it is possible to defend against infection. Unfortunately, there are multiple reasons

why it is unlikely that one identification method will be universally effective. Those reasons
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include:

• Miscellaneous types and penetration methods: As briefly introduced, malware consists

of many types and with many penetration methods. A compromised system displays

different symptoms when infected with different types of malware instances. For ex-

ample, upon the release of a new Internet worm, a compromised machine will instantly

send out packets to probe other vulnerable machines and infect them. This quick ac-

tion is important for the malware to reach a large percentage of vulnerable hosts

before a detection approach is developed. The sharp burst of similar network packets

observed during worm spreading can trigger a quick mitigation response [16]. Other

malware instances, such as bots, do not necessarily launch new infection attempts

immediately. Most of the time, they silently lurk in the compromised machines and

wait for external commands to perform malicious actions [17]. As another example,

there are numerous ways to acquire private information, including the installation of

keyloggers, or the launching of phishing attacks to lure victims to visit fake web sites

to capture personal information.

• No source code: It is generally impractical to acquire malware source code for anal-

ysis purposes. Many times it is only possible to obtain the binary executables of

malware, through methods such as honeypot trapping [13, 18]. Static analysis of the

malware binaries, or emulation of malware execution is generally used to study the

malware characteristics. However, both static and dynamic analysis of executables

have limitations, as will be discussed in Chapter 2.

• Rapid infection: The spread of malware instances can be extremely fast, with global

infection potentially taking only a few minutes [8]. It takes about 20 minutes for an

unpatched Windows machine connected to the Internet to get infected [9]. No host

computer system today has been shown to be malware-proof for a relatively long time.

Therefore, it is highly desirable to have an automated malware detection system, as

manual identification will be ineffective and/or burdensome.

• Advanced self-defense approaches: Malware writers have invented a variety of self-

defense techniques that are are crucial to the success of these attacks. These tech-

niques aim to hinder malware analysis, and can be classified in a variety of ways.

Figure 1.1 shows a classification due to [1].
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• Numerous malware mutants: It is also quite common that new malware variants (or

mutants) rapidly evolve from old malware, to which new functions have been added or

in which existing functionalities have been tweaked [19]. For example, the VX Heavens

website [20] provides access to thousands of malware variants in a variety of different

categories. For each malware variant, a signature may be identified, packaged, and

downloaded to the base of users expecting protection from the new attack. The huge

range of possible variants, and the speed with which they appear, makes manual

creation of signatures less and less a practical approach.
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Figure 1.1: Malware Self-Defense Technologies [1]

In this dissertation, I study multiple research problems related to the malware

self-defense techniques of polymorphism (self-decrypting malicious code) and metamorphism

(automated code obfuscation). These techniques attempt to bypass the most popular mal-

ware detection method, which is based on fixed code signatures. We have proposed three

methods. These methods are fully automated, and rely only on the availability of binary

executables (i.e., do not require source code for analysis).
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1.1.1 Polymorphic Remote Exploit Code Detection

Remotely-launched software exploits are a common way for attackers to intrude

into vulnerable systems and gain control of them. Such exploits often make use of poly-

morphism.

Conventional signature-based intrusion detection is the most popular approach for

detection of such malware. Some well-known and very successful systems include Snort [21]

and Bro [22]. They monitor every inbound packet and examine this incoming data for

specific signatures of known malware. When such a signature is found the IDS raises

an alarm indicating malicious traffic has been found, and then blocks future traffic from

this source. According to Snort.org, “a signature is defined as any detection method that

relies on distinctive marks or characteristics being present in an exploit [21].” A common

type of signature consists of substrings, or byte sequences, from the attacking packet’s

payload. A signature should be detailed enough (consist of enough information) to minimize

the likelihood of a “false alarm” (normal, non-malicious traffic that innocently has similar

characteristics to an attack). However, the signature should not be short for performance

reasons, as network speeds provide very little time for packet analysis.

As mentioned, malware writers have resorted to defensive techniques that degrade

the utility of signature-based detection. Two such techniques are polymorphism, which en-

crypts exploit code and then self-decrypts on download, and metamorphism, which uses code

obfuscation to make each mutant seemingly different. With such techniques, no sufficiently

long non-varying byte sequence can be found in the exploit code for use as a signature,

even though the malware functionality is unchanged. These techniques thereby confound

static signature-checking. There are already many toolkits [23, 24, 25] to automatically

generate polymorphic exploit code. Although self-mutating metamorphic exploits have not

been detected in large numbers yet, toolkits for generating metamorphic code are under

development [20]. We conjecture self-mutating metamorphic exploits (or worms) will occur

eventually, since there are already real metamorphic viruses such as W32/Apparition and

W95/Zmist seen in the wild [26].

There has been substantial research to combat such malware self-defense tech-

niques. The first type of research uses static analysis [27, 28, 29, 30] of binary code. This

has shown promise in detecting a specific and non-trivial class of exploits. These exploits

target buffer overflow vulnerabilities, accounting for more than 20% of the vulnerabilities
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reported by CVE [31]. This class of exploits contains program-like code that has distinc-

tive control flow and data flow characteristics that can be detected. Figure 1.2 shows a

characteristic structure of polymorphic exploits produced by one of the available exploit

toolkits [23, 24, 25].

NO-OP sled Decryption routine Encrypted payload

Figure 1.2: A typical structure of a polymorphic exploit of a buffer overflow vulnerability.

The effectiveness of static analysis depends on how well the program-like payload

(e.g., the decryption routines) can be distinguished from non-code data, and from non-

exploit code. There are several significant challenges. First, exploit code is often hidden

inside network traffic, at a non-obvious starting location [27]. Second, the exploit code

(instructions) may be interspersed or intermingled with data (whether valid or not) [27].

Unfortunately, it has been shown that most bytes of data can be disassembled into legitimate

instructions in Intel assembly code [27]. Hence, code bytes cannot be distinguished from

data bytes solely by the use of disassembly. Third, exploit code that is “visible” (i.e., that

is not encrypted) is usually manually crafted and does not follow the same programming

conventions as executable programs generated by a compiler. For instance, compiled code

rarely makes use of overlapping instructions, or of self-modifying instructions. Exploits may

do so for the express purpose of defeating static disassembly.

Available static analysis approaches [29, 30, 27, 28] are only partially successful.

They are not effective on exploit code containing self-modifying and indirect control transfer

instructions, partly due to the non-obvious starting location of the exploit code. No previous

methods offer a mechanism to clearly identify the starting location of the polymorphic

exploit code. Toth and Kruegel [29] and Akritidis et al. [30] proposed methods that look

for a NO-OP sled to detect exploits. However, more advanced exploit code may not need

to use a NO-OP sled [32, 33]. Chinchani et al. [27]’s approach extracts the control flow

of the exploits based on a disassembly technique that is not resilient to data injection

attacks. Wang et al. [28] proposed a code abstraction method to distill useful instructions

from an instruction sequence to detect exploits. However, the abstraction is based on a

dataflow anomaly rule that is easily evaded by some obfuscation techniques. For instance,

two instructions referring to the same undefined variable can still be useful. (i.e., they can

be used to clear the registers for initialization.) If malware exploits this property, most of
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the useful instructions of the malicious code would not be detected by the method of Wang

et al.

The second research approach is based on emulated instruction execution, or dy-

namic analysis. Polychronakis et al. [34] proposed a method that uses emulated execution

to more effectively identify self-modifying polymorphic exploit code than is possible with

static analysis. The execution of potential instruction sequences is emulated to reveal the

run-time behavior of polymorphic exploit code. Their approach does not provide a compre-

hensive mechanism to identify the starting location of polymorphic exploit code in network

traffic. There will be too much overhead if all potential starting locations are tried, but

simple heuristics for narrowing down the possible starting locations may miss some attacks.

In summary, existing static and dynamic analysis research is not adequate for

defeating such code concealment techniques. This dissertation proposes a new approach

that combines static and dynamic analysis to address the problem of detecting exploit code

within network traffic. The proposed approach is discussed in Chapter 3.

1.1.2 Metamorphic Malware Identification

Malware detection tools such as virus scanners have been the major defense against

malware attacks on personal computers. They are useful but often criticized for being overly

simplistic, particularly when dealing with unknown malware instances, or variants of known

malware [35, 36, 37, 38]. These detectors use signatures and focus only on the identification

of characteristic instruction sequences derived from collected malware samples. They lack

insight into malware program semantics or malicious behavior. This limitation is easy

to exploit by employment of program concealment techniques such as polymorphism and

metamorphism [26, 23, 24].

Malware variants (or mutants) that rapidly evolve from existing malware cause

difficulties for signature-based detectors. Thousands of malware variants in a variety of

different categories can be easily obtained through Internet web sites such as VX Heavens

[20, 39]. For each malware variant, a signature may be identified, packaged, and downloaded

to a base of users expecting protection from the new attack. The huge range of possible

variants, and the speed with which they appear, makes this a less and less practical ap-

proach. Zmist is an advanced metamorphic virus that demonstrates a set of polymorphic

and metamorphic code writing skills which include entry-point obscuring, random use of an



8

additional polymorphic decryptor, code permutation, and code integration [26].

One recent research proposal used semantic templates of malicious behavior (such

as the decryption loop in polymorphic malware) for detection of such malware [37]. The

templates are generated by studying the common behavior of a set of collected malware

instances. However, these templates must be generated manually for each defensive tech-

nique.

In summary, to deal with metamorphic malware or new malware mutants, code

semantics should be considered to augment the signature generation process. This summary

of the programs’ semantics should be an automated process. This dissertation proposes a

new approach that uses fully automated static analysis of executables to summarize and

compare program semantics. This approach is presented in Chapter 4.

1.1.3 Automated Common Malware Behavior Generation

Given such an approach, it is challenging and non-trivial to generate semantic

patterns for malware identification. This is due to the overwhelming number of malware

types and malware mutants.

The third work in this dissertation proposes an approach to automatically discover

common malicious program behavior from a set of malware samples. The output of this

approach is a general semantic program pattern that occurs in these malware samples.

This general pattern can then be used by the malware detection method mentioned above

to identify an entire family of malware. Since this pattern is not tailored to a particular

malware instance, and represents a set of common behaviors of an entire malware family,

it can effectively overcomes the obfuscation techniques utilized by attackers when creating

malware variants. Experimental validation of this idea shows a major reduction in the

number of patterns needed to identify mutants. In addition, use of common behavior

patterns improves the detector’s resilience to a type of data attack that deliberately inserts

“junk” code (not important to the exploit’s intended function). This work is discussed in

Chapter 5.

1.2 Summary of Contributions

The contributions of this dissertation are as follows:
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• Polymorphic remote exploits detection: This dissertation presents a new method to

detect, in incoming network packets, encrypted polymorphic exploits that are self-

decrypting. The proposed method harnesses static analysis and emulated instruction

execution to find the program entry point, and to identify the instructions of the

polymorphic exploit code. Previous approaches [34, 27, 28, 29, 30] do not offer such

capabilities. In addition, the proposed method can detect polymorphic exploit code

that is self-modifying, which has previously defeated static analysis. The proposed

method has been implemented and evaluated against real polymorphic exploits pro-

duced by Metasploit [25], and also those produced by polymorphic engines [23, 24].

It achieved a 100% detection rate on polymorphic exploits which use statically coded

decryption routines. It likewise had a 100% detection rate for decryption routines

that are self-modifying. The method was also tested on typical network traffic not

containing polymorphic exploits, and on Windows executable files. The false positive

rate was .0002% and .01% for these two categories, respectively. We also measured the

running time of our non-optimized implementation. The running time was roughly

linear in the size of the traffic being analyzed and was between 1 and 2 MB/s.

• Metamorphic malware identification: This dissertation proposes a semantic charac-

terization of programs, and a method for using such characterizations as a basis for

malware detection. The method is resilient to many commonly-used obfuscation tech-

niques. The proposed method has been implemented and evaluated on actual malware

variants, widely-used benchmark programs that have been randomized, and different

releases of the GNU binutils programs [40]. The evaluation results demonstrate three

important capabilities of the proposed method: (a) it shows promise in identifying

metamorphic variants of common malware; (b) it distinguishes easily between pro-

grams that are not related; and, (c) it can identify and detect program variations, or

code reuse. Such variations can be due to insertion of malware (such as viruses) into

the executable of a host program or program revision. Thus, an indirect application

of the proposed work is to help localize an occurrence of one fragment of code inside

another program.

• Automated common malware behavior generation: This dissertation proposes a new

approach to automatically discover common malicious behavior from a set of mal-

ware samples, for detection of metamorphic malware or new malware instances. This
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method combines static analysis and data-mining techniques. This method has been

prototyped and evaluated on real world malicious bot software, and on normal (non-

malicious) Windows programs. Through experimental comparison with the metamor-

phic malware detector, this method results in approximately an 80% reduction in the

number of signatures needed to detect known and new malware instances. It is more

robust to “junk code” attacks than the metamorphic malware detection technique. A

set of experiments was performed to test the quality of the common behavior patterns

which were generated, with a variety of parameter configurations. Two optimized

common behavior patterns were obtained. For one, the detection and false positive

rates were 94% and 8.3%, respectively, while for the other, the detection and false

positive rates were 78% and 0.32%.

1.3 Organization of Dissertation

The rest of this dissertation is organized as follows. Chapter 2 describes the prob-

lem background, and related work. Chapter 3 presents a new method for detection of

polymorphic exploit code in network traffic. Chapter 4 discusses a new method to summa-

rize and compare program semantics for identification of metamorphic malware executables.

Chapter 5 presents a new method for automatically generating common malware semantic

patterns. Chapter 6 concludes the dissertation and discusses possible directions for future

research. The appendix A presents background information on analysis of binary executa-

bles, and on common code obfuscation techniques. It also presents an additional example

of self-modifying polymorphic exploit code disassembly.
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Chapter 2

Background and Related Work

There are seven broad areas which are relevant to this dissertation and overlap

somewhat. Significant advances have been made in these areas. We discuss some of them

here to put our work in perspective.

2.1 Binary Code Disassembly

Disassembly is the process of recovering a symbolic representation of a program

from its binary representation [41]. Disassembling binaries is a difficult task for two primary

reasons: variable-length instructions and fundamentally indistinguishable data embedded

inside code regions. There are two standard disassembly techniques. The linear sweep

method, which decodes bytes sequentially, has deficiencies in distinguishing between em-

bedded data and actual instructions. Therefore it can be defeated by data injection attacks

and by other attacks, such as the use of overlapping instructions. Figure 3.2(a) shows an

example where this is the case. Recursive traversal, which decodes bytes by following the

control flow of the program, can better deal with such attacks. However, it requires the en-

try point of the program to be known in advance. Moreover, the target address of a branch

instruction cannot always be statically determined by recursive traversal. In this case, lin-

ear sweep may discover more valid instructions. Various techniques have been proposed

to improve the disassembly coverage or accuracy. Cifuentes et al. [42] used speculative

disassembly techniques to improve disassembly coverage. Their approach made certain

assumptions on the properties of the machine and the conventions of the programming

language or the operating system. Program obfuscation has been used to protect software
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security. For example, it has been used to protect software content from malicious reverse

engineering [43]. Linn and Debray proposed two techniques to foil disassemblers [44]. One

is through inserting unreachable junk code into the program and the other is through using

a branching function in place of regular call instructions. Kruegel et al. [41] proposed static

binary analysis techniques to improve the disassembly success rate for obfuscated binaries.

This method uses the program’s control flow graph and statistical techniques to correctly

identify a large fraction of the program’s instructions. These static disassembly methods

cannot correctly handle code which contain self-modifying and/or overlapping instructions

or in which other static-resilient techniques are used. Additionally, to apply these various

techniques to disassemble code buried in network traffic, the starting point of the code

should be found first.

2.2 Conventional Anti-Virus Software

Virus scanners may be the most important line of defence against malware. These

tools typically rely on signatures that are extracted from malware bodies to detect known

malware. Malware signatures are generated in such a way that they are typical of the ana-

lyzed malware programs but not likely to be found in benign programs. As malware evolves,

the types of signature and the methods that are used for the search of such signatures also

evolve. A modern anti-virus software may use many types of signature, some of which are

listed as follows - 1) regular expression of code byte sequences [26]; 2) checksum [26]; and

3) statistical distribution of code bytes [45].

Signature databases of virus scanners need to be quickly updated whenever an

unknown malware sample is detected in the wild. However, the signature generation for

an unknown malware sample is usually a manual process which is laborious and slow. A

human expert runs the unknown program in a restricted environment (i.e., a debugger) and

analyzes its actions or behaviors.

The above described manual process is inadequate to keep up with the speed of

new malware generation. Malware writers have devised various automated techniques of

concealing or constantly changing their attacks to defeat detection by signatures. One

such technique is polymorphism which makes uses of code encryption. Early generations

of polymorphic viruses used fairly simple encryption schemes in which only the keys were

changed from one copy to another while the encryption routines remained the same [26].
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More sophisticated polymorphic viruses were developed such that the encryption routines

and keys could both be changed, i.e., using code obfuscation techniques that are called

metamorphism or using multiple encryption layers [26].

Anti-virus software can use signatures to detect a polymorphic virus after the

virus program has been decrypted. There are several widely used methods for decrypting

polymorphic viruses such as x-ray scanning and emulation [26].

2.3 Static Analysis and Dynamic Analysis

Static analysis and dynamic analysis are two main approaches that are used for

analyzing unknown malware.

Static analysis techniques analyze the code of a program without executing it. To

perform static analysis on binary code, three steps are usually involved. The binary code

is converted into corresponding assembler instructions first. This step is called disassembly.

Then, the conclusions about the program behavior can be derived by applying various

control flow and data flow analysis techniques. Static analysis can cover the complete

program code and examine all possible paths of execution, theoretically. It is usually faster

than the dynamic analysis. However, static analysis has deficiencies. Many interesting

questions regarding program behaviors or properties are generally undecidable. Attackers

can deliberately craft malware that are hard to analyze statically. Particularly, they can

make use of various code obfuscation techniques to confuse the disassembly and code analysis

[44]. Various techniques, such as overlapping instructions, indirect addressing, and self-

modifying code, can thwart static disassembly.

In contrast, dynamic analysis techniques analyze the code of a program by actually

executing it. They are robust to the obfuscation techniques and those anti-static-analysis

techniques (i.e, self-modifying). Dynamic analysis also has deficiencies. First, it incurs

much more overhead than the static analysis. There could a lengthy code sequence that

has to be executed to reach conclusions about the code behavior. Second, it only covers

a part of all possible program execution paths. Therefore, many important behaviors of

the analyzed program cannot be discovered. Third, it is hard to simulate the execution

conditions under which the analyzed malware exhibits its malicious behaviors [46]. For

instance, a bot program needs to receive control and commands from a bot master to

exhibit its malicious behaviors. Fourth, if the code is executed in a virtual machine like
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VMWare, there are techniques [47, 48] that can be utilized by the attackers to determine

whether the code is running in virtual environment. As a result, the code can be designed

to modify its runtime behavior.

2.4 Network-level Polymorphic Exploit Code Detection

There are four major categories of approaches that detect exploit code (or other

intrusions) by analyzing the network traffic.

Signature Based. This category of approaches is most widely used for its ease of

being developed and deployed. The IDS (Intrusion Detection System) has certain techniques

for generating the signatures of detected or known threats and uses them for detection and

blocking of future attacks from the same threat. This category of approaches can serve

as a quick response to a new emerging large scale threat when the vulnerability has not

been detected or fixed yet. However, in general, this category of methods has a high

maintenance cost, in the sense that signature repositories need to be constantly updated as

new polymorphic variants are encountered.

Polygraph [49] and Hamsa [50] are examples of the signature-based approach.

These methods generate polymorphic worm signatures by finding common invariant content

substrings among multiple polymorphic worm samples. This approach requires a network

traffic classifier to preselect suspicious traffic for training. The detection and false positive

rates depend on the effectiveness of the classifier. If the background “noise” (network

traffic not containing exploits, but selected by the classifier) is significant, the accuracy can

be significantly reduced. Newsome et al. [38] presented an attack that causes the signature

learning approach to fail. Nemean [51] is a method that uses protocol semantics to group

similar worm traffic, and that uses machine-learning techniques to generate connection and

session level signatures. This approach requires detailed protocol specification for every

application protocol. It is also sensitive to background noise.

Wang et al. [52] proposed a packet vaccine mechanism that randomizes address-

like strings in packet payloads for fast exploit code signature generation and detection. This

mechanism uses a confirmed exploit as a template to generate a number of variations of

that exploit. These exploit variants will likely cause an exception in a vulnerable program’s

process when they attempt to hijack the control flow and expose themselves thereby. This

approach detects and filters exploits in a black-box fashion and avoids the expense of track-



15

ing the program’s execution flow. This approach has a benign side effect that can better

characterize software application’s vulnerabilities. However, two drawbacks are obvious.

First, this approach does not work on polymorphic exploit code which uses encryption to

protect the content. Therefore, the address-like strings from the encrypted payload do not

make any sense. Second, this approach requires a pre-detected and confirmed exploit code.

Static Analysis Based. This category of approaches [29, 30, 27, 28] uses static

analysis as well as binary disassembly techniques to derive the control flow and data flow of

the exploit code buried inside the network traffic and distinguish the code from the data.

However, due to unknown code starting location, the efficiency of these static approaches

is highly affected by various anti-static techniques such as self-modifying, overlapping in-

structions and indirect branch instructions.

Emulation Based. Polychronakis et al. [34] proposed a method that uses instruc-

tion emulation to more effectively identify self-modifying polymorphic exploit code than is

possible with static analysis. The execution of potential instruction sequences is emulated

to reveal the execution behavior of polymorphic exploit code. Their approach does not pro-

vide a comprehensive mechanism to identify the starting location of polymorphic exploit

code in network traffic. There will be too much overhead if all potential starting locations

are tried, but simple heuristics for narrowing down the possible starting locations may miss

some attacks.

Data-Mining Based. Payer et al. [33] combined neural networks with a simple

NO-OP sled detector (as used in [29]) to detect exploit code. The neural network has to

be carefully trained with negative and positive data sets, which highly affects its detection

rates. In practice, high quality training sets may be difficult to obtain and keep updated.

2.5 Obfuscated Malware Detection

The papers reviewed in this section describe host-level detection methods which

have access to a complete representation of the malware and the runtime environment for

either static or dynamic analysis.

Kruegel et al. [53] proposed a technique based on the structural analysis of binary

code by constructing its control flow graph that allows one to identify structural similarities

between different worm mutants. The efficiency of this approach depends on how accurately

the control flow graph can be recovered because disassembly is a generally hard problem and
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does not yield 100% accuracy. This approach has limitations with respect to its application

on detection of exploits or worms inside network traffic. One critical problem addressed in

the paper is to determine which k-subgraphs of the derived control flow graph appear in

network streams. This problem can be converted to a canonical graph labeling problem [54]

which is as difficult as the graph isomorphism problem [55] and has no known polynomial

algorithm [53]. This means that if k is very large the running time for their approach

can potentially be quite large, and if k is small the approach tends to generate a high

false positive rate. How to determine the value of k during polymorphic worm detection

is not addressed in their work. An exploit code is generally small and quite different with

a Windows executable program. Therefore, the control flow graph may be very simple

without many blocks. This can further invalidate the approach’s assumption that there are

many connected blocks inside the flow containing worm code.

Christodorescu et al. [56] presented a unique view of malicious code detection as an

obfuscation-deobfuscation game. Based on this view, the authors constructed ten obfuscated

versions of four viruses and tested the resilience of three commercial virus scanners against

code-obfuscation attacks. In this paper, the authors used control flow graph comparison to

detect some simple obfuscation techniques easily used by the virus writers.

A recent method named PolyUnpack [57] automatically identifies and extracts

the hidden-code bodies of unpacking-executing malware, with knowledge of the instance’s

static code model. Christodorescu et al. [37] proposed detecting malware through the use

of semantic behavior models which are called templates. One of the presented templates

models the decryption loop of polymorphic malware. However, this method does not provide

a way to model self-modifying decryption loops. How to define a general semantic behavior

model remains as an open problem.

Chouchane and Lakhotia [58] proposed using “engine signature” to assist in detect-

ing metamorphic malware. Basically, it evaluates collected forensic evidence from x86 code

segments through a code scoring function to get some measure of how likely it is that they

have been generated by some known instruction-substituting metamorphic engine. However

this method has limitations. It can only deal with known instruction-substituting metamor-

phic engines. There are many, perhaps even infinitely many ways to create metamorphic

engines, not necessarily limited to substitution. Moreover, this technique can be defeated

by shrinking substitution methods.
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2.6 Data Mining Based Program Behavior Modeling

Data mining based approaches [59, 60, 61, 62] have been frequently used to build

behavior models for instruction detection purposes. These methods are applied to system

calls or network data to learn how to detect new intrusions. However, these methods try to

construct benign behavior models and detect deviated behaviors via run-time monitoring. A

recent paper [46] developed a novel mining technique to specify malicious program behaviors

by mining differences of execution traces between a malware sample and a set of benign

programs. However, a general limitation to this dynamic execution based approach is its

difficulty in simulating the malicious execution environment to obtain a high coverage of all

possible malicious execution traces.

The work by Schultz et al. [63] is closest to our work. It built a framework that

uses three different data-mining algorithms (i.e., RIPPER, Naive Bayes, and Multi-Naive

Bayes) to train multiple classifiers on a set of malicious and benign executables to detect new

malware instances. The training binaries are statically analyzed to extract the properties

of using DLLs, strings, and byte sequences of the binaries.

2.7 Other Miscellaneous Malware Defense Mechanisms

Malware has posed a great threat to the Internet’s infrastructure. Great efforts

have been made to 1) prevent the attacks, 2) detect the malware or attacks, 3) identify the

vulnerabilities, and 4) diagnose and recover from an error or crash when an attack succeeds.

Each field has achieved significant advances. Some papers from each area are reviewed here.

Prevention. There are many tools which involve compiler analysis and trans-

formation for dynamic prevention of buffer overflow attacks. StackGuard, StackShield,

ProPolice, Libsafe, Libverify, and RAD are such tools and are compared in paper [64].

StackGuard places a ‘canary word’ on the stack between local variables and return address

in the function prologue and monitors the return address by checking the integrity of the

‘canary word’ at the function’s epilogue. This method can be bypassed by the corruption

of old frame pointers on the stack or local pointer variables. StackShield and RAD save

an extra copy of the return address at the function’s prologue and check it with the return

address on the stack at the epilogue. ProPolice, similar to StackGuard, does local variable

reodering so that char buffers are always placed at the bottom (low addresses) and cannot
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overflow other local variables. Libsafe and Libverify rely on run-time library call intercep-

tion and checking. They intercept unsafe library function call such as strcpy() and then

perform bounds checking on the arguments.

The mono-culture nature of the hardware and software makes it possible to explore

a single vulnerability to compromise a large number of hosts. Address space randomization

is a program obfuscation technique which defeats or at least makes difficult the memory

error exploits (such as buffer overflow exploits) [65]. The idea is to load or run the vulnerable

program at a randomized address location to make the predication of a targeted vulnerable

program’s address space difficult so that an attack that succeeds against one victim will

likely not succeed against another. However, running time address space randomization

only thwarts the attack to a limited degree [66].

Sidiroglou et al. [67] proposed an end-point architecture to automatically repair

software flaws to counter various attacks. This approach requires information about software

source code.

Detection. Various types of techniques are proposed to identify attacks. In this

section they are discussed briefly as follows.

Behavior-based malware detection. Various approaches have studied malware (i.e.

worms, spyware) network behaviors or host behaviors to come up with corresponding so-

lutions. This type of technique is more robust against polymorphism and metamorphism.

However, sometimes the studied behaviors are tailored to some specific malware. Formu-

lating the behavior signatures is currently ad hoc.

Ellis et. al [68] detected worms by looking for certain patterns of worm behaviors in

network traffic. They proposed using three behavioral signatures that are common in worm

traffic. They observed the following three worm behaviors in network traffic: 1) sending

similar data from one machine to the next; 2) tree-like propagation and reconnaissance;

and 3) changing a server to a client [68]. This approach appears promising but has some

difficulties. First, it is not clear whether sending similar data from one machine to another

is often indicative of suspicious activity. In P2P networks, it is a common scenario that

ingress/egress traffic exhibit great similarities. Second, the behavioral techniques need to

maintain large amounts of state information about network host behaviors. This could be

quite expensive in practice.

E. Kirda and C. Kruegel [69] proposed a technique for spyware detection based

on the characterization of spyware-like behavior. This approach is tailored to one particu-
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lar and popular class of spyware applications that use Internet Explorer’s Browser Helper

Object(BHO) and toolbar interfaces to monitor a user’s browsing behavior space. Their

approach uses a composition of static and dynamic analysis to determine whether the be-

havior of BHOs and toolbars in response to simulated browser events should be considered

malicious.

Moshchuk et al. [7] proposed an interesting study that examines the amount, the

types, the frequencies, and the most dangerous web zones of spyware on the World Wide

Web. Their basic approach is to simply crawl the web and then analyze all captured binary

with the help of a VM and Ad-Aware as well as web sites containing malicious content that

exploit browser vulnerabilities. This work points out there are two common methods that a

spyware can use to install itself surreptitiously. The two methods are piggy-backed spyware

download by a user with another application and a “drive-by download” attack which

exploits a vulnerability in the user’s browser to install software without the user’s consent

when the user visits the malicious web pages. This work finds 13.4% of 21200 executables

are identified as spyware and 5.9% of the Web pages processed contain “drive-by download”

attacks.

Kruegel et al. [70] used static analysis techniques to detect kernel-level rootkits

which exhibit a certain behavior at load-time. These specific rootkits exist within the

operating systems which support loadable kernel modules. They operate within the kernel

and modify critical data structures such as system tables at load-time.

Wang et al. [71] designed a tool to automatically generate network-level signa-

tures for spyware by correlating user input with network traffic generated by the untrusted

program. This method has several fundamental limitations as pointed out by [71].

Binary instrumentation to monitor/sandbox the execution of vulnerable programs.

Many current software attacks build on exploits that subvert the intended machine code

execution. Therefore, various proposals [72, 73, 74, 75, 76] design techniques to enforce one

basic security property: control flow integrity. They do this via binary instrumentation.

They insert binary checking code to monitor the execution of the binary program. Due

to disassembly limitations and performance consideration, these designs are generally not

able to deal with software utilizing self-modifying, runtime code generation, unanticipated

dynamic loading of code as well as other obfuscation techniques for protection [74].

Program shepherding proposed by Kiriansky et al. [73] provided three techniques

for enforcing a security policy. First, it restricts execution privileges on the basis of code
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origins to ensure the malicious code masquerading as data never gets the chance to be

executed. Second, it restricts control transfer based on instruction class, source, and target

through techniques such as forbidding execution of shared library code except through

declared entry points and restricting a return instruction targeting the instruction after a

call. Third, it guarantees the sandboxing checks will never be bypassed. However, this

method cannot detect the overflow within a structure.

Prasad and Chiueh [75] used a binary rewriting approach to augment Win32/Intel

Portable Executable binary programs with a return address defense mechanism which pro-

tects the integrity of the return address on the stack with a redundant copy. The paper

demonstrates safe binary instrumentation in practical cases.

TaintCheck proposed by Newsome and Song [72] used a software emulator to

track the tainted application data. Depending on its configuration and policies, TaintCheck

performs binary rewriting at run time to check various program behaviors, e.g., use of

tainted data as jump targets, use of tainted data as format strings, and use of tainted data

as system call arguments in order to prevent exploits at running time. As pointed in this

paper, TaintCheck can detect only some of the attacks that use tainted data as system call

arguments as some applications require legitimately embedding tainted data in the system

call arguments. Moreover, the approach can bring a non-trivial runtime slowdown of 1.5-40

times as pointed out in this work. It requires further effort to address the issues of security

coverage, false positive rate, and performance overhead.

Abadi et al. [74] relied on dynamic checks for enforcing control flow integrity (CTI)

by machine-code rewriting. CTI instrumentation modifies each source instruction and each

possible destination instruction of computed control transfer according to a given control

flow graph which is derived from static program analysis. The instrumentation inserts a bit

pattern (ID) to identify an equivalence class of destinations and inserts before each source

a dynamic ID-check to ensure the runtime destination has the ID of the proper equivalence

class. However their approach has three assumptions which are not always valid for complex

applications.

W. Li et al. [76] proposed a solution to build a system call-based sandboxing

system, called BASS, which can derive a system call model for win32/X86 binaries that

involves dynamically linked libraries, multi-threading, and exception handlers. The BASS

system call model representation checks three things: system call ordering, system call

coordinates (which is defined by the sequence of function calls from the program’s main



21

function to the function containing the system call site and the system call site itself), and

system call arguments. The three aspects highly improve the accuracy of the system call

model, which is frequently used in host-based intrusion detection systems.

Generic vulnerability signatures. Wang et al. [77] proposed a first-line worm

defense in the network stack. Their approach is to install network filters on end host systems

which match vulnerability signatures to known exploitable vulnerabilities. This approach

removes the dilemma regarding applying a not yet fully tested software patch which may

be unreliable and disruptive. The method is essentially self-limited. It can only be applied

to some well-known vulnerabilities. How to derive a generic vulnerability signature is an

open research problem.

Brumley et al. [78] proposed data-flow analysis and adopted existing techniques

such as constraint solving for automatic generation of vulnerability signatures. They pre-

sented three forms of signatures: Turing machine, symbolic constraint, and regular expres-

sion signatures. However, their work is not complete and still has limitations. In their

formal definition framework, the vulnerability condition is assumed to be given. This is,

however, the most difficult and critical component for the vulnerability signature generation

framework. In their framework, there is no algorithm or method to describe how to use the

generated vulnerability signature, i.e. for the Turing machine signature.

Newsome et al. [79] proposed two vulnerability-specific execution-based filters(VSEF):

taint-based VSEF and destination-based VSEF that achieve better performance than full-

blown execution monitoring. Their methods require the vulnerable program’s execution

trace to identify the instrumentation location of the checking code. For their destination-

based VSEF, debugging-table information is needed for identifying the bounds of the input

buffer in order to be able to insert the checking code.

Honey Pot. According to SANS.org, “Honey Pot Systems are decoy servers or

systems set up to gather information regarding an attacker or intruder into your system.

[80]” The hosts in honey pot system have untreated vulnerabilities. Therefore, any un-

solicited and malicious inbound activities can be directly observed and saved for further

analysis. Consequently, any unsolicited outbound traffic will be a strong indication of in-

fection. Kreibich et al. [81] designed a host based system - Honeycomb, that can generate

signatures of intrusions using honeypots. Honeycomb uses the longest common substring

(LCS) algorithm to find similarities in packet payloads which are monitored and saved, and

generates signatures thereafter. Honeypot systems are passive. They rely on the hosts being
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infected to generate signatures. Hence they can be too slow to manage worm outbreaks.

Collaborative Method. Vigilante [82] relies on collaborative worm detection at

end hosts which can share self-certifying alerts (SCAs) upon worm detections while not

necessarily trust each other. SCAs are provided as proofs of vulnerability. Once hosts

receive an SCA, they can generate filters to block infection by analyzing the SCA-guided

execution of the vulnerable software. This method may suffer from DDOS attacks. It is

insufficient to defend against extremely fast worms such as hit-list worms.

Traffic Analysis. Some methods collect network traffic and find the patterns of

characteristic malware (i.e., worms, spams, and botnet) for identifying the outbreaks of

some large scale attacks.

1. Scan anomaly detection. Using exploits intensively to find vulnerable hosts in

the Internet, a worm may result in highly abnormal network traffic in terms of the number,

frequency and distribution of scanned addresses and the number of failed connections [83].

Staniford et al. [83] designed a portscan detector that is effective against stealthy scans

as well as all the other scans detected by concurrent techniques. The basic idea is to

have an anomaly sensor and a correlator. The sensor monitors the traffic and assigns an

anomaly score to each event based on packets header fields such as source and destination

IP address, source and destination port, protocol and protocol flag. It then passes those

sufficiently anomalous events to the correlator.

2. String counting and sifting. Earlybird [84] and Autograph [85] are two systems

that automatically derive worm signatures from suspicious network traffic by sifting through

the traffic and identifying the most frequently appearing strings as signatures. However,

their methods can be easily evaded by obfuscated worms and can cause high false positive

rates due to non-worm traffic which exhibits similar traffic frequency patterns similar to

worms.

3. Traffic payload anomaly detection and correlation. PAYL [86] is a worm detec-

tion and signature generation system that can detect new worms without signatures by using

machine learned models of normal network content traffic. It works by firstly identifying

anomalous packet payloads and generating alerts, and secondly correlating ingress/egress

anomalous payloads to detect a worm propagation and generate signatures. A “normal pro-

file” is pre-established and represents the statistical distribution of the byte values extracted

from the training network datagrams. Anomalous packets are detected by comparison with

the normal profile. Packets are flagged as anomalous when their “Mahalanobis distance”(see
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paper [86] for detail) with the normal file exceeds a threshold. The correlation approach

is used to reduce false alarms. The normal file or the trained model is site-specific, service

port, and length specific. However, this approach can be defeated by polymorphic blending

traffic [87]. Furthermore, P2P traffic exhibits a strong ingress/egress correlation that may

be falsely flagged as worms.

Garriss et al. [88] proposed a whitelisting system that can automatically populate

whitelists by exploiting friend-to-friend relationships among email correspondents in order

to filter spam emails. Xie et al. [89] proposed a system DBSpam to detect and break

proxy-based email spam laundering activities inside a customer network and trace out the

relevant spam sources outside the network. They revealed one characteristic of proxy-

based spamming activities, packet symmetry, by analyzing protocol semantics and timing

causality. DBSpam used a statistical method- Sequential Probability Ratio Test- to detect

the occurrence of spam laundering by monitoring the bi-directional traffic passing through

a network gateway.

Bug Finding. There has been a great deal of work about bug finding including

static analysis tools [90], better type systems [91], software model checking [92], and input

generation [93]. Each field has much more papers than that could be listed here. These

tools work on source code program and sometimes need to re-compile the program.

Diagnosis and Recovery. Rx [94] is an approach that can quickly recover pro-

grams from many types of software bugs by rolling back the program to a recent checkpoint

in the event of a software failure and then re-executing the program in a modified envi-

ronment. This work shows the method is 21-53 times faster than a whole program restart.

Rx cannot guarantee recovery from all software failures because neither semantic bugs nor

resource leaks can be directly addressed by Rx. Furthermore, a false recovery can be made

due to not detecting a failure in time, thus making a false checkpoint.

Smirnov and Chiueh [95] proposed a GCC compiler extension DIRA that trans-

forms a program’s source code to enable the resulting program to automatically detect any

buffer overflow attack against it, repair the memory damage left by the attack, and identify

the attacking packets. DIRA, based on memory update logging, inserts logging code into

an application’s source code and restores the execution to a nearest checking point. Their

approach can only deal with certain buffer overflow attacks that aim to control-hijacking

the return addresses or certain types of function pointers.
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2.8 Summary

In summary, malware detection is an active research area in which polymorphic

and metamorphic malware detection is a hot topic. In the next three chapters we present

three new approaches that address the polymorphic and metamorphic malware problems

and present the evaluation results. These approaches are fully automated.
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Chapter 3

Polymorphic Remote Exploit Code

Detection

This chapter introduces the first proposed technique, which is to detect polymor-

phic exploit code in network traffic through static and dynamic analysis. The proposed

method works by scanning the network traffic for the presence of a decryption routine,

which is characteristic of such exploits.

3.1 Overview

Attackers frequently use remote exploits to intrude into vulnerable systems and

gain control of them. Their remote exploitation techniques are evolving. To evade signature-

based detection methods, which are the most popular and widely deployed methods, the

attackers come up with various techniques to conceal their attacking traces, ensuring no

sufficiently long constant content can be fingerprinted. Encryption is an established tech-

nique which is a frequently used concealment method. Exploit code which uses encryption

for concealing purpose is called polymorphic exploit code.

NO-OP sled Decryption routine Encrypted payload

Figure 3.1: A typical structure of polymorphic exploit codes on buffer overflow
vulnerabilities

Figure 3.1 shows a typical structure of the polymorphic exploit code. In such a

structure, there is encrypted exploit payload which looks like random data, and a decryption
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routine which is normally appended to the encrypted payload such that when the whole

exploit is received and executed by the vulnerable program, the encrypted exploit can self-

decrypt and fulfill the actual malicious functions. The decryption routine is normally a

sequence of manually crafted machine instructions that reverses the effects of the original

encryption that is applied to the exploit payload. Since it consists of machine instructions,

the decryption routine has characteristic control flow and data flow that distinguish itself

from non-code data when disassembled.

We use static and dynamic program analysis to identify and disassemble the exe-

cutable code (i.e., the decryption routine). There are several research challenges. A poly-

morphic exploit code is often buried inside the network traffic at a non-obvious starting

location and intermingled with non-code data, thereby making detection a difficult job.

The non-exploit-code data consist of various parts such as the protocol frame head, the

embedded junk data, etc.

The proposed method first locates where the decryption routine is in the network

traffic. It then verifies the detected code is a decryption routine by checking whether it

satisfies two properties that are typical of such code.

To locate where the decryption routine is, the proposed method first identifies

possible starting locations of a decryption routine by looking for a form of GetPC code.

This is code that the decryption routine uses to get the absolute address of the encrypted

payload in the vulnerable program’s address space. It then applies recursive traversal from

there to find the decryption instructions, looking for a loop in the control flow structure. In

addition, the proposed method is enhanced with the capability to dealing with self-modifying

decryption routines. It first uses a two-way traversal and backward data-flow analysis to find

the functional instructions, i.e. the self-modifying instructions as well as the initialization

instructions. It then uses emulated instruction execution of the instructions already found

to discover the self-modifying decryption routine.

To verify the detected code is a decryption routine, the proposed approach checks

whether it satisfies two properties that we observe from typical decryption routines. These

properties have not been used for this purpose previously.
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3.2 The Proposed Method

We now describe the method in detail, starting with the decryption routine local-

ization.

3.2.1 Decryption Routine Localization

Generally speaking, a decryption routine is suspected if the control flow structure

shows the existence of a loop. Loops are likely to occur in decryption routine for the simple

reason that decryption of a sequence of bytes is a very repetitive process.

General Approach

The general approach works by firstly finding the starting point of the decryption

routine and then use recursive traversal to find the loop structure of the decryption routine.

Starting Point Localization.

The first step is to find the starting instruction of the decryption routine which is hidden

within the network traffic. This routine may be intermingled with bytes of data (non-

instructions). The proposed approach is to scan the network packet for candidate seeding

instructions of GetPC code. We now explain seeding instructions and GetPC code.

As argued by Polychronakis et al. [34], reliable exploit code should avoid any

hard-coded absolute addressing. Therefore, the decryption routine must have some way to

dynamically determine the address of the encrypted payload in the vulnerable program’s

address space, in order to modify it. This is accomplished by GetPC code, which computes

absolute addresses as offsets from the current value of the program counter. The GetPC

code should be among the very few instructions that cannot be self-modifying, and it also

should be among the very few first functional instructions of a decryption routine. Therefore,

detection of GetPC code helps localize the start of the decryption routine.

Polychronakis et al. [34] identified two 1 feasible and easy forms of GetPC code.

One way is through a call instruction. Execution of a call instruction pushes the return

address (the PC) onto the stack. The decryption routine when executed can easily read this

return address from the stack. The second way is through a fnstenv instruction, which
1M. Polychronakis et al. [34] also mentioned a third form of GetPC code which is to exploit the structure

exception handling(SEH) mechanism of Windows. However they mentioned this technique is not feasible
with advanced version of Windows.
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0000    29 c9                sub ecx, ecx       

0002    66 b9 42 01      mov cx, 0142

0006    e8 ff ff ff ff call 000A

000A   ff c1                  inc ecx

000C   5e                      pop esi

000D   30 4c 0e 07 xor [esi+ecx+07], cl

0011    e2 fa loop 000D

….       <encrypted payload>

0000   eb 0c              jmp 000E

0002   5e                   pop esi

0003   56                   push esi

0004   31 1e xor [esi], ebx

0006   ad lodsd

0007   01 c3              add ebx, eax

0009   85 c0              test eax, eax

000B  75 f7               jne 0004

000D  c3                   ret

000E  e8 ef ff ff ff    call 0002

….      <encrypted payload>

(a) (b)

Figure 3.2: Disassembly of decryption routines for a) Countdown b) JmpCallAdditive en-
coders. The underlined instructions are the seeding instruction, the instruction for decrypt-
ing the encrypted exploit payload and the instruction for updating the address of encrypted
exploit payload. For both examples, a loop structure is presented.

0000    31 c9                             xor ecx, ecx       

0002    da c7                             fcmovb st(0), st(7)

0004    b1 23                             mov cl, 23

0006    d9 74 24 f4                    fnstenv 14/28byte[esp-0c]

000A   bf 78 0f 5e f3                 mov edi, f35e0f78

000F   5b                                   pop ebx

0010    31 7b 15                        xor [ebx+15], edi

0013    03 7b 15                        add edi, [ebx+15]

0016    83 bb 0b bc 06 c7 fc     cmp [ebx+c706bc0b],-4

….       <encrypted payload>

(a) (b)

0000    31 c9                          xor ecx, ecx       

0002    da c7                          fcmovb st(0), st(7)

0004    b1 23                          mov cl, 23

0006    d9 74 24 f4                fnstenv 14/28byte[esp-0c]

000A   bf 78 0f 5e f3             mov edi, f35e0f78

000F   5b                               pop ebx

0010    31 7b 15                     xor [ebx+15], edi

0013    03 7b 15                     add edi, [ebx+15]

0016    83 c3 04 add ebx, 4

0019    e2 f5 loop 0010

….       <encrypted payload>

Figure 3.3: Disassembly of Self-Modifying decryption routine for ShikataGaNai encoder. a)
Before Execution b) After Execution. The fnstenv instruction is the seeding instruction.
The xor [ebx+15], edi] is the instruction for decrypting the self-modifying decryption
routine and encrypted exploit payload. The loop structure is revealed after execution.

stores the current FPU environment, including the preceding FPU instruction pointer, in

an area of memory specified by the instruction. This instruction pointer can then be read

by a following instruction and, as for the PC, used to compute the absolute address of the

encrypted payload. The call or fnstenv, which are the key instructions for GetPC code

to work, we term seeding instructions. The number of candidate seeding instructions in the

Intel instruction set is expected to be limited.

By scanning the network packet for the seeding instruction (call, fnstenv etc.)

of GetPC code, we can coarsely locate where a decryption routine starts.

We scan the network traffic for the occurrence of seeding instructions. Each such

instruction found is treated as if it belongs to a decryption routine. We have an enhanced

approach to more precisely locate the starting instruction, as well as other decryption
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routine instructions.

Recursive Traversal To Detect Decryption Loop Structure.

Recursive traversal is a standard disassembly technology. It is robust against data-injection

attacks, in which code is interleaved with data. The proposed method uses it to find the

control flow structure of the decryption routine. Once a loop is detected during recursive

traversal, this is a candidate for a decryption routine. However, a recursive traversal may be

hindered by indirect addressing branch instructions, and the loop structure can be hidden by

self-modifying code techniques. An enhanced approach can address these two issues. The

approach uses (a) two-way traversal and backward data-flow analysis, and (b) a limited

instruction emulation.

Enhanced Approach

The enhanced approach deals with the two issues when a self-modifying decryption

routine is used and the indirect addressing branch instruction is used.

Two-way Traversal and Backward Data Flow Analysis To Find Decryp-

tion Instructions.

The enhanced method uses both forward and backward traversal of code from the seeding

instruction to find the decryption routine. Backward traversal is needed since the seeding

instruction may not be the very first instruction executed by the routine. This analysis

step is quick if the seeding instruction is close to the start of the decryption routine. For-

ward traversal recursively follows the control flow, starting at the seeding instruction, to

find the instructions that are data-flow dependent on the GetPC code. This includes the

instructions directly responsible for data decryption.

Backward traversal uses breadth first search, starting at the seeding instruction,

to find the instructions that are not data-flow dependent on the GetPC code. This includes

the initialization instructions. First the set of instructions that directly reach the seeding

instruction at byte offset i of the input network traffic are found. This set will possibly con-

tain branch instructions whose target address is i. The set may also contain non-branching

instructions immediately preceding the seeding instruction. Then instructions reaching

instructions in this set are found, etc. A branch instruction using indirect addressing is un-

likely to appear prior to the seeding instruction in the control flow for the simple reason that

the GetPC code must be executed first. The same is true for self-modifying instructions.
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It must be decided which instruction sequence will actually be executed before

the GetPC code. Backwards data-flow analysis is used for this purpose. This is a popular

technique for program analysis [96]. Backward data-flow analysis is a commonly used

technology in program analysis [96]. Here we use it for finding the instructions of the

decryption routine. If an instruction of the decryption routine is found, backward slicing is

used to find instructions on which it has data-flow dependency (i.e. we follow backwards the

define− use chain). The instruction from which the backward data-flow analysis begins is

either (a) an instruction that writes to memory, or (b) a branch instruction with indirect

addressing. Let this be called the target instruction. When the target instruction is (a),

it could be an instruction used for decrypting the hidden loop or the encrypted payload.

When the target instruction is (b), it could be an instruction to obfuscate the control

flow. Either of the instructions is significant. When we use backward slicing, if we find all

required variables have been defined till the seeding instruction, then there is no non-GetPC

decryption routine code exists earlier than the seeding instruction. Otherwise, there must

be. To choose which instruction sequence contains these code, we pick one that defines all

the rest variables or is the longest of multiple qualified instruction sequences.

Figure 3.3 is an example to illustrate this two-way traversal and backwards data-

flow analysis. In 3.3 (a), the instruction at offset 0006 is the seeding instruction. During

the forward traversal, the instruction xor [ebx + 15], edi is encountered. This is the

target instruction, which uses values stored in ebx and edi. The contents of these two

registers are defined by the previous instruction pop ebx and mov edi, f35e0f78. We find

these two instructions by backward data-flow analysis. The instruction pop ebx is data-

flow dependent on the seeding instruction fnstenv 14/28byte[esp-0c] which is data-flow

dependent on the previous fcmovb st(0), st(7). The instruction fcmovb st(0), st(7)

is found by backward traversal, as described.

After constructing a chain of instructions through backward traversal, the execu-

tion of instructions in the chain is then emulated, as described below.

Detection of Self-modifying Decryption Routine.

Self-modifying decryption routines are detected by performing emulated execution of the

already found decryption instructions. The purpose of this execution is to determine the

address to which the target instruction writes a value, or the address to which the target

instruction branches, depending on the type of the target instruction. As far as the emula-

tion is concerned, the decryption code of the input network traffic is mapped to a random
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virtual address space of the vulnerable program that the exploit code targets.

The emulation is limited in the following way. Instruction emulation proceeds until

a decryption loop is detected, or an illegal instruction is encountered. If a memory location

is modified that is within the emulated address space of the code, this fact is noted. It is

evidence for the existence of a decryption routine. If the address of the target instruction

branches points to the flow itself, the forward traversal is continued, otherwise it is stopped.

In a favorable situation, instruction emulation only occurs for a small number

of instructions. This is because execution ends once a self-modifying decryption loop is

uncovered. For a decryption loop not using self-modifying techniques, only one traversal of

the loop is needed to stop execution.

3.2.2 Decryption Routine Verification

The previous phase detects the presence of a possible decryption routine by finding

the loops in its control flow structure. During the detection of the loop, a form of GetPC

code should be available to find a pointer to the encrypted payload. The data flow of the

detected loop is analyzed to improve the overall accuracy of the method. Two properties

of of decryption routines are exploited for this purpose.

The first property is that in a detected loop, there must be a memory store in-

struction that uses indirect addressing. That is, a register is used to contain an offset that

partly identifies the location where data is to be read or written. In addition, the memory

address pointers to the input network traffic. IA-32 [2] offers 24 memory addressing modes

which can be classified into two categories – the direct and indirect addressing. For direct

addressing, the memory operand’s address is specified directly in the instruction. For indi-

rect addressing, the memory operand’s address is referred through one or two registers w/o

a displacement. These registers offer a base address(stored in the base register) w/o an off-

set value(stored in the index register) w/o relative displacement to them. A memory-store

instruction using direct addressing is unlikely to be the instruction that directly modifies the

encrypted payload. The hard-coded address easily results a fragile exploit code. (That is

why the GetPC code is needed). For instance, the instruction at address 000D in Figure 3.2

(a) is such an example. IA-64 architecture also supports RIP/EIP-relative data addressing.

The memory address can be referenced through RIP/EIP registers.

The second property is that the register holding the address or offset must be
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updated within the loop. Otherwise the same memory location will be written over and

over. In our current prototype, we only look for instructions that will update the register

value in predictable and regular ways. For instance, inc/dec/sub/add instructions are most

favorable for updating the registers. Other instructions, such as string instruction lods and

loop instruction loop may also be used to update the register which holds the address or

the offset. Future work will generalize this analysis. A possible way for the attackers to

achieve the randomness is using a sequence of push instructions to specify the decryption

order in the stack. The decryption loop then uses pop to get the order and then decode

iteratively.

A few implementation details are as follows. Each instruction in a cycle is inspected

to determine if it satisfies the first property, according to its opcode and addressing mode.

If it is such an instruction, the cycle is cut to create an instruction sequence, with this

instruction at the end. Then, other instructions in the sequence are sliced out by checking

whether they have a data-flow dependence on the target instruction, using backward slicing.

For example, suppose an unwrapped cycle contains the instruction sequence inc

eax, xchg eax,esi, xor [esi],ebx. The first two instructions are sliced out because of

their effect on register esi, used in the final instruction.

For checking the data flow dependency of two instructions, instructions are first

converted, through into a semantics-preserving transformation, into an intermediate repre-

sentation. This is helpful for overcoming code obfuscation techniques used in metamorphic

exploits. For instance, a well crafted decryption routine may combine several processing

steps into a single instruction. The loop and lodsd instructions shown in Figure 3.2 are

examples.

3.3 Evaluation

A prototype of the proposed method has been implemented, and evaluated under

realistic conditions. The results are described below.

3.3.1 Detection Rate

We tested the detection capability of the proposed approach on polymorphic ex-

ploits. These exploits were generated by two off-the-shelf polymorphic engines: ADM-

mutate [23], and Clet [24]. These engines have been used in other research for the same
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purpose [49, 50, 34, 33]. Also tested were polymorphic exploits generated by the Metas-

ploit Framework [25]. This is a powerful open source framework for the construction and

execution of exploits. This framework has also been used in other research [27, 34, 28].

The first experiment was as follows. 10 exploits were downloaded from Milw0rm

[97]. For each exploit, 10 polymorphic instances were generated, using the above tools (AD-

Mmutate and Clet). ADMmutate may be the first well-known polymorphic engine. It can

generate a simple metamorphic NO-OP sled with one-byte instructions, and a metamor-

phic decryption routine using several advanced obfuscation techniques. These include using

multiple code paths for an operational instruction and inserting non-operational “junk” in-

structions. Clet can generate a metamorphic NO-OP sled using English words. It also uses

“cramming” bytes to make the byte frequency of the resulting polymorphic exploit codes

resemble that of normal network traffic.

Each of these exploit instances was then input to the proposed detection method.

All 100 instances were successfully identified as exploit code. Both of these polymorphic

engines generate encrypted exploit codes with an obvious NO-OP sled of sufficient length,

as well as an obvious decryption loop. Previously-proposed detection methods [27, 28, 34,

29, 30] may also be able to detect such exploits. The existence of a sufficiently long NO-OP

sled will help them cope with the non-obvious starting location of the decryption routine.

The second experiment simulated remote exploit attacks, using the Metasploit

Framework. The target service was an unpacked Windows XP host running the Serv-U ftp

server v4.0. Attacks were launched from a Windows host using polymorphic exploits for

the following vulnerabilities:

• Serv-U FTPD MDTM Overflow [98]

• Microsoft RPC DCOM MS03-026 [99]

• Microsoft LSASS MSO4-011 Overflow [100]

• Microsoft ASN.1 Library Bitstring Heap Overflow [101]

For each vulnerability, we launched multiple attacks from the Metasploit console interface,

using the following encoders (encryption methods):

1. Pex

2. PexFnstenvSub
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3. PexFnstenvMov

4. Countdown

5. JmpCallAdditive

6. Alpha2

7. ShikataGaNai

These were combined with two NO-OP sled generation methods: Pex, and Opty. Pex

generates a NO-OP sled with one-byte instructions. Opty generates a NO-OP sled with

multiple-byte instructions, as well as a “trampoline” sled, which transfers control using

relative addressing directly to the exploit code. The traffic capture tool Ethereal was used

to capture the network traffic generated by Metasploit. This traffic was then input to the

prototype implementation of the proposed detection method.

The proposed approach successfully detected all of the polymorphic exploits gener-

ated using the encoders Pex, PexFnstenvSub, PexFnstenvMov, Countdown, and JmpCallAdditive.

These encoders generate static decryption code with the properties identified in section 3.2.2.

They do not employ self-modification of the decryption routine. Figure 3.2, for example,

shows the disassembly of the decryption code produced by the Countdown and JmpCallAdditive

encoders. The underlines mark the major functional decryption instructions: the seeding

instruction of the GetPC code, the memory-writing instruction for decrypting the encoded

payload and the instruction for updating the address of encoded byte.

More impressively, the proposed method successfully detected 100% of the ex-

ploits generated by the Alpha2 and ShikataGaNai encoders. These methods generate

self-modifying decryption routines. The decryption loop is changed or patched “on the

fly” (during execution) before it is used to decrypt the exploit. For illustration, Figure 3.3

shows the disassembly of the self-modifying decryption code for ShikataGaNai encoder.

Figure 3.3(a) shows the original decryption routine before execution. Figure 3.3(b) demon-

strates the results after execution of the self-modifying decryption routine. The underlined

instructions in (b) have the same effects as those shown in Figure 3.2. In addition, the

underlined bytes identify the modified instructions before and after execution. In the ap-

pendix A, we also present the disassembly results of the self-modifying decryption routine

for Alpha2 encoder to favor interested readers.



35

The polymorphic exploit code for attacking Serv-U FTPD MDTM Overflow vul-

nerabilities does not use a NO-OP sled. This has been verified by inspection of the outputs

generated under different configurations, and by inspection of the Metasploit source code.

The absence of a NO-OP sled will likely defeat several proposed methods which specifically

look for the NO-OP sled [29, 30]. Emulation methods (e.g., [34]) are also likely to have

problems identifying the start of the decryption routine. One of its heuristic for perfor-

mance optimization is to skip several bytes (e.g. 50 bytes) after a zero byte is detected

at a byte offset. Without the compensation effect of the NO-OP sled, instructions of the

decryption routine codes could be missed by the method. Sigfree [28] cannot detect poly-

morphic exploit codes generated by small-sized decryption routines, such as Countdown,

as mentioned in [28]. It also cannot detect polymorphic exploits that use self-modifying

decryption routines, such as the exploit codes generated by encoder ShikataGaNai. The

method proposed by Chinchani et al. [27] also cannot detect polymorphic exploits with

self-modifying decryption routines.

In summary, the proposed method achieves a 100% detection rate on polymorphic

exploit codes, with or without NO-OP sleds, and with or without self-modifying decryption

routines. No previous method of static analysis has been able to achieve this. Emula-

tion methods (e.g., [34]) can deal with the polymorphic exploit codes with self-modifying

decryption routines. However they are not robust against those without NO-OP sled.

3.3.2 False Positives

We also tested the proposed method on normal (non-exploit) network traffic, and

on Windows binary executables. A detection method should indicate in both cases that the

traffic does not contain exploits. Indicating otherwise is regarded as a false positive.

We collected network traffic for five days from users in our lab, engaging in normal

activities. Most of the traffic was UDP, FTP, HTTP, SSL, and other TCP data packets.

Among these packets, the number of FTP and TCP packets containing downloaded exe-

cutables, video files, and streaming video was significant (>90%). Over 4 million packets

were captured, with a total payload size of more than 5 GB.

The data payloads from these packets were extracted and presented to the proposed

method for testing, a packet at a time. Most exploits are small (a few tens of bytes) and

easily fit within a single packet. (We discuss the limitations of this approach in section
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3.4.) A packet incorrectly identified as containing an exploit was a false positive. The false

positive rate was calculated as:

(# of falsely identified packets) / (Total # of packets)

Windows executables were also analyzed to determine the ability of the proposed

method to distinguish exploit code from non-exploit code. Executables in the C:\windows\system32

directory of a machine running Microsoft Windows XP, service pack 2, were used for this

purpose. The total size of these files was around 1 GB. For analysis, we packetized each ex-

ecutable into a sequence of packets, and analyzed each packet separately. The false positive

rate was calculated as above.

The results were as follows. The false positive rate was 0.0126% for the case of

Windows executables, and 0.0002% for the case of captured network traffic. Only 8 out of

more than 4 million packets resulted in false identifications, or alerts. The packet contents

were manually inspected to verify that they did not contain exploits.

3.3.3 Processing Cost

We also measured the running time of the core detection algorithm of the proposed

approach. The experiments were performed on a machine running Microsoft Windows XP,

service pack2, with a Pentium(R)D 3.00GHz CPU, and 2GB of RAM. In these experiments,

network packets and Windows executables of various sizes, ranging from several bytes to

millions of bytes in length, were analyzed. We used the function clock() provided by Mi-

crosoft Visual C++ to measure the accumulated running time for core detection procedures

and calculate the average value. Figure 3.4 shows the results.

Our non-optimized implementation demonstrates a modest processing speed. The

results show almost a linear relationship between the packet size, and running time. The

current implementation achieves a speed of roughly 1.5M/s. This method has not been

optimized, and substantial speedups should be possible.

3.3.4 Comparison With Previous Work

This subsection summarizes the comparison with previous research proposals. Pre-

vious static-analysis approaches [29, 30, 27, 28] are not robust against the exploits which

employ static analysis resilient techniques such as self-modifying and indirect control trans-

fer instructions, partly due to the non-obvious starting location of the exploit code. None
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Figure 3.4: Running Time Overhead

of these approaches offer a mechanism to clearly identify the starting location of the poly-

morphic exploit code. Toth and Kruegel [29] and Akritidis et al. [30] proposed methods

that look for a NO-OP sled to detect exploits. However, more advanced exploit code may

not need to use a NO-OP sled [32, 33]. The exploit that exploits Serv-U FTPD MDTM

Overflow vulnerabilities [98] and is used in our experimental evaluation is such a case.

Chinchani et al. [27]’s approach extracts the control flow of the exploits based on

a disassembly technique that is not resilient to data injection attack. It also cannot detect

polymorphic exploits with self-modifying decryption routines. Wang et al. [28] proposed

a code abstraction method to distill useful instructions from an instruction sequence to

detect exploits. However the code abstraction which is based on a data-flow anomaly rule

that an instruction referring an undefined variable is deemed useless is easily evaded by

some obfuscation techniques. For instance, two instructions referring to the same undefined

variable can still be useful, i.e. they can be used to clear the registers for initialization. If the

attacker purposely exploits this property, most of their useful instructions would probably

not be detected by a chaining effect. This proposal [28] cannot detect polymorphic exploit

codes generated by small-sized decryption routines, such as Countdown, as mentioned in [28].
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It also cannot detect polymorphic exploits that use self-modifying decryption routines, such

as the exploit codes generated by encoder ShikataGaNai.

The second type of approaches is based on instruction emulation. Polychronakis et

al. [34] proposed a method that uses instruction emulation to more effectively identify self-

modifying polymorphic exploit code than is possible with static analysis. The execution of

potential instruction sequences is emulated to reveal the execution behavior of polymorphic

exploit code. Their approach does not provide a comprehensive mechanism to identify the

starting location of polymorphic exploit code in network traffic. There will be too much

overhead if all potential starting locations are tried, but simple heuristics for narrowing down

the possible starting locations may miss some attacks. The polymorphic exploit code which

does not use a NO-OP sled for attacking Serv-U FTPD MDTM Overflow vulnerabilities

may bypass this emulation approach.

The work presented in this chapter combines both static analysis and instruction

emulation techniques to detect the remote polymorphic exploits. The evaluation results

demonstrate that the proposed method has a 100% detection rate on realistic exploits of

many types, including those that use self-modifying code, and/or that do not have a NO-OP

sled. No previous method of static analysis has been able to achieve this. Emulation meth-

ods (e.g., [34]) can deal with the polymorphic exploit codes with self-modifying decryption

routines. However they are not robust against those without NO-OP sled.

3.4 Attack Analysis

We discuss now the possibility of defeating the the proposed detection method.

Fragmentation. Decryption routines are normally of small size. They can be contained

within single packets. However, the attackers may deliberately split exploit traffic

across multiple packets. It is trivial to reassemble packets before analysis, at the

cost of modest additional processing overhead (i.e., the dependence on payload size is

slightly greater than linear, as shown in Figure 3.4.)

No use of looping by the decryption routine. A loop is very likely to be needed for

decryption purposes, since in-line coding of a decryption routine will otherwise be

much longer (and therefore easier to identify). Interspersed in-line decryption code

and the encrypted exploit payload should be highly carefully designed. This is because,
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after it has run, the decryption code should be bypassed by the decrypted exploit code.

Here we do not claim there are no such encryption or decryption methods. Instead,

we speculate preventing the use of looping for the decryption methods will raise the

bar for the attackers.

Use of values not in the exploit code. Polychronakis et al. [34] have pointed out that

attackers can use data from the environment in which the exploit executes. If self-

modifying code relies on a key outside the address space of the exploit, this will not

be detected by the proposed method at present. However, such exploits will be much

more platform specific, and therefore much more sensitive to small system changes

and randomization techniques [65].

Long or infinite loops. The analysis time of traversal and execution depends on the

length of the derived chain of instructions. If the code contains a lengthy loop, or one

which does not terminate, analysis may fail or may require an excessive amount of

time. Nevertheless, our approach can still be useful as a first-stage detection method.

Polychronakis et al. [34] demonstrated that long loops in normal network traffic are

rare.

3.5 Summary

In this chapter, we presented a new method for detection of self-decrypting ex-

ploits. The proposed method scans network traffic for the presence of a decryption routine,

which is characteristic of such exploits. The proposed method outperforms previous propos-

als [27, 28, 34, 29, 30] in its capability to identify more precisely the starting location of the

decryption routine, with fewer assumptions. The method also can identify the decryption

routine even if self-modifying code has been used to conceal its presence.

The evaluation results demonstrate that the proposed method has a 100% detec-

tion rate on realistic exploits of many types, including those that use self-modifying code,

and/or that do not have a NO-OP sled. On a large collection of network traffic and Windows

executables, a very low false positive rate was observed. The non-optimized implementation

running time is roughly linear in the amount of data processed. These results indicate the

proposed method is likely to be useful as part of an automated network defense again both

targeted attacks, and large-scale zero-day worm outbreaks.
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The proposed method is not claimed to be a panacea. There are ways that the

proposed method can be bypassed such as using lengthy loops or using running-time-

environment related values. To do so, attackers need to carefully craft their exploit code.

Nevertheless, the proposed approach can still be useful as a first-stage detection method.

Future work will focus on generalizing the method for less obvious sequences of

byte decoding. In addition, we will test the method on non-exploit code that uses code

obfuscation, code encryption, and self-modification for legitimate purposes (e.g., to prevent

reverse-engineering, and to protect license verification). We expect the way these techniques

are used to be substantially different than exploit code.

In the next, we are going to introduce our second work which identifies metamor-

phic malware that uses code obfuscation for concealment.
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Chapter 4

Metamorphic Malware Detection

In this chapter, we address the problem of identification of metamorphic mal-

ware and malware mutants. Unlike polymorphic malware, metamorphic malware uses code

obfuscation techniques instead of encryption to bypass the conventional signature based

detection.

4.1 Overview

Metamorphic malware and enormous malware mutants can easily bypass signa-

ture based malware detection [35]. Metamorphic malware can obfuscate its entire code in a

variety of ways, such as control flow transposition, substitution of equivalent instructions,

variable renaming, etc. [56, 26]. This creates an arms race between the metamorphic mal-

ware writers (or obfuscation engines such as Mistfall, Win32/Simile, and RPME as pointed

out in [26]), the signature writers, and the owners/administrators of the threatened comput-

ers or devices, which must be protected. It is also quite common that new malware mutants

(or variants) rapidly evolve from old malware, to which new functions have been added or

existing functionalities have been tweaked [19]. For example, the VX Heavens website [20]

provides access to thousands of malware variants in a variety of different categories. For

each malware variant, a signature may be identified, packaged, and downloaded to the base

of users expecting protection from the new attack. The huge range of possible variants and

the speed with which they appear makes this a less and less practical approach.

One essential reason for this vulnerability is that signature based approaches are

essentially syntactic and lack insight into the programs’ semantics.
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To address this problem, this chapter presents a semantic characterization of pro-

grams and a method of matching such characterizations as a basis for malware detection

that is resilient to many commonly-used obfuscation techniques. Generally, the problem of

determining whether a program will exhibit a certain behavior is undecidable. Therefore,

this chapter presents an approximation approach that is based on static program analysis

to address the problem.

Static program analysis is used for many purposes, such as security vulnerability

checking [90, 102], and program behavior modeling for intrusion detection [103, 60]. Static

program analysis needs to be done only once and does not require run-time monitoring

of program execution, which has substantial overhead. Proving that two programs (for

instance, an instance of a virus and a suspected metamorphic variant) are functionally

equivalent is an undecidable problem, unfortunately. The goal for static analysis of this

chapter is thus less than a full proof of functional equivalence.

Instead, we propose to characterize a program in a way that can combine both

structure and function. This characterization is referred to as the pattern of a code fragment.

Ideally, the pattern should be markedly different for distinct malware, and the obfuscation

used by metamorphic engines would not drastically change the pattern derived by static

analysis. The challenge is to compute such patterns quickly, and to find a way to compare

patterns that yields insight into the similarity between program functions. These patterns

then can be used in a way that is similar to the way that signatures are used by conventional

virus checkers. The use of patterns must be substantially more resistant to obfuscation than

the use of fixed signatures, however.

When two programs are analyzed to produce patterns representing their function,

these patterns can be compared to determine how similar the programs are. The process of

comparing patterns is termed pattern matching in this dissertation. The output of pattern

matching is a similarity score between 0 and 1, where a value of 0 is interpreted to mean the

program functions are very different, and a value of 1 is interpreted to mean the program

functions are extremely close or identical. To make a decision whether an unknown program

is similar enough to a known malware to require that it be quarantined, this score must be

greater than a user-defined threshold.

We propose that patterns are based primarily on the system calls or library exe-

cuted by the malware. We propose to statically analyze the control and data flow of call

traces, which are the instructions that prepare the parameters used by a system call plus
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the corresponding call instruction. System call based modeling has been frequently used

to characterize a program’s behavior for intrusion detection purposes [103, 60]. It is a

reasonable assumption that a compromised application cannot cause much harm unless it

interacts with the underlying operating system [60].

As an illustration of this behavior, the Sapphire worm executes the following set

of system calls [104]: LoadLibrary, GetProcAddress, GetTickCount, socket, sendto. Malware

which did not make use of such system functions would likely be harder to write, and result

in a much larger code size. The use of existing code obfuscation techniques or metamorphic

program transformations does not in general remove such system calls from the malware.

The proposed approach differs from a previous research contribution [37] with

similar assumptions and goals. That work proposes to use semantic templates of certain

malicious behavior (such as the decryption loop in polymorphic malware) to detect mal-

ware. The templates are generated by studying the common behavior of a set of collected

malware instances and are generated manually. The method in this chapter, in contrast,

automatically generates a pattern that characterize a program’s semantics and uses this

pattern to detect either obfuscated, or mutated, malware.

The proposed method has been implemented and evaluated on actual malware

variants, widely-used benchmark programs that have been randomized, and different re-

leases of the GNU binutils programs [40]. The evaluation results demonstrate the proposed

method can make a clear distinction between semantically equivalent or related programs,

and those that are not. The measured similarity score of an original benchmark program

and its randomized version in most cases achieves a value of .95 or greater. The measured

similarity scores of different releases of the GNU binutil programs can achieve .75 or better.

The measured similarity scores for different malware variants vary, but there is a very clear

distinction between malware variants and non-variants. To apply the proposed approach

in practice, a reasonable threshold can be set by the user to determine the sensitivity of

malware detection.

4.2 The Proposed Method

In this section we present a new method of static analysis of executables. This

method disassembles two executables and then computes the degree of similarity between

them. The essential characteristics used for this comparison are the system or library
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function calls made by the two programs. The method is intended to be used for recognition

(and subsequent isolation) of metamorphic malware and malware variants.

4.2.1 Pattern Generation Based on Static Analysis

System calls and library function calls are proposed to be used as the basis for gen-

erating a pattern that characterizes a target malware. Control flow and data flow analysis

are used for this purpose.

To generate a pattern for code fragment p, p is disassembled first. There are a

number of methods and tools designed to disassemble obfuscated binary code. The method

of Kruegel et al. [41] was adapted for this purpose.

Once the code is disassembled, the control flow is easily obtained through static

analysis. The result of such an analysis is a set of basic blocks and the transfers of control

between those blocks. The call instructions that branch to system or library functions are

then identified. Let Ii denote such a library call instruction in block i, and let the total

number of library call instructions in the program be denoted as N .

The next task is to identify instructions that affect the parameters (values in

memory or registers) used by the system functions when they are called by the program.

While there can be many such parameters, the only such parameter used at present by the

proposed method is the target address of the call instruction. Finding the instructions

that affect the target address can be accomplished by data flow analysis.

The data flow analysis is initially given a single block i, and includes the system

call or library function call Ii contained in that block. In block i, the instructions affecting

the parameters of Ii are determined and sliced. Essentially, they refer to the instructions

with definitions reaching 1 this call. For each of these instructions, the blocks affecting their

input operands are determined by data flow analysis. This process of backwards data flow

analysis continues until either (a) the target block i is again reached (in which case a cycle

has been discovered), or (b) there are no more instructions remaining for which backwards

data flow analysis must be performed. The dependency or data flow relationship between

instructions can then be represented as a graph, with a vertex for each instruction in the

program, a directed edge from u to v if the instruction corresponding to vertex u affects

the operand(s) of the instruction corresponding to vertex v, and the vertex representing Ii

1Please refer to a textbook on compiler theory [96] for the explanation of reaching definition in data flow
analysis.
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as the sink of the graph. A maximal instruction trace B in this graph is a path from a

vertex having no predecessor in the graph to the vertex representing Ii. The above process

is performed for each system or library function call encountered in the disassembled code.

To implement the backwards data flow analysis for finding maximal instruction traces, we

use a depth first search algorithm to traversal the control flow graph. There is a limit on

the depth of traversal (i.e., the number of visited control flow blocks in one pass). The limit

is configured as 8 in our experimentation to reach an acceptable runtime performance. For

instance, the results can be quickly obtained within minutes.

Following this data flow analysis, the instructions of each maximal instruction trace

are processed to generate a subpattern for the trace. For this purpose, each instruction is

first converted into an intermediate representation, based on the semantics of the instruc-

tion. This intermediate representation is convenient for processing and allows functionally

equivalent instructions to be represented in the same way. It also allows the method to be

applied regardless of the instruction set architecture, although at present only the Intel x86

architecture [2] is targeted, due to its popularity.

The intermediate representation consists of the operation type, the operands, and

the operand addressing modes (i.e., immediate data, register, or memory addressing). The

operation types for the x86 architecture are classified into eight major categories (e.g.,

data transfer, arithmetic, logical, control transfer) and within each category multiple sub-

categories may be defined. For instance, the loop and jcc instructions both transfer control

and therefore are assigned to the same operation type. Operands are classified as being of

type source (read only) or destination (write only or read/write), and the addressing mode

and associated register, if any, are recorded. The conversion to intermediate form allows

many instructions that are functionally equivalent to be identified to a limited degree. For

instance, using intermediate representations, the instructions sub ecx, ecx and xor ecx,

ecx are identified as functionally equivalent to mov ecx, 0, and the instruction push eax

is identified as being equivalent to dec esp, 4 followed by mov [esp], eax. Section 4.2.3

provides details on the intermediate instruction representation.

After conversion to the intermediate representation, the instructions in each maxi-

mal trace are symbolically executed in a very limited way. Currently, this symbolic execution

is simply the propagation of constant values. Suppose the first (earliest) instruction in a

trace assigns a constant value c to a register or memory location, and this constant value

can be propagated to the target system call Ii as the address to which flow of control will
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occur. This call instruction and the (constant) target address then form an element of a

subpattern for a single maximal trace ending at Ii. Note that this symbolic execution is not

sophisticated enough to recognize all target addresses unambiguously. For instance, some

addresses may be computed from information that is not available until runtime. Therefore,

when an instruction cannot be symbolically executed, the propagated constants are bound

to it and recorded. All such instructions in their intermediate representation are recorded

in order and form an element of the subpattern for a single maximal trace ending at Ii. An

executable instruction in a maximal trace is not included in the element.

The subpattern for Ii, denoted Ui, is the set of all such elements for all maximal

traces ending at Ii. The set of all such subpatterns Ui for all the system or function calls in

code fragment p is called the pattern of p, and is denoted as P p. The intuition behind this

definition of a program pattern is that a malware program will normally make use of some

well-defined system services, whose addresses must be found (so that they can be accessed)

in a well defined way. Attempts to obfuscate the program function, without changing the

set of system or library function calls, can still leave this behavior visible to inspection.

Even obfuscation of the target of a system call may leave the true target exposed as one

possibility. Since the proposed method uses all possible traces, this true target will remain

part of the pattern of the code fragment. The use of both symbolic execution and control

flow analysis for disassembly will also overcome many known methods of obfuscation, as

will be shown in section 5.3.

Figure 4.1 shows an example of the patterns generated for code fragments of the

Sapphire worm and for a metamorphic variant of this worm. For purposes of illustration,

each sub-pattern is presented in Intel x86 assembly language form, and is a result of data

flow analysis and symbolic execution. For instance, subpattern 1 of pattern PA results

from symbolic execution of the instruction trace mov esi, [0x42AE1018] || call [esi],

in which the second instruction operand depends on the first instruction. Subpattern 3 of

pattern PA has two elements which result from two traces whose target is the same library

function call. In this example, there happens to be multiple subpatterns which are identical.

This is because some of the library functions are called in multiple places, with different

parameters.

The next section explains a method of pattern matching to compute the similarity

between two binaries. The input to this process is the patterns derived from the binaries

in the way just described. The pattern matching algorithm is intended to overcome the
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Pattern(PA)

Sub-Patterns

1 call [0x42AE1018]

2 call [0x42AE1018]

call [0x42AE101C] call [0x42AE1010]

mov ebx, [0x42AE1010]

mov eax, [ebx]

call eax

call [0x42AE101C] call [0x42AE1010]

mov ebp, esp

mov eax, [ebp-40]

call eax

call [0x42AE101C] call [0x42AE1010]

mov ebp, esp

mov eax, [ebp-40]

call eax

3

4

5

6

7

8

Pattern(PB)

Sub-Patterns

1

call [0x42AE1018]

2

call [0x42AE1018]

call [0x42AE101C] call [0x42AE1010]

mov ebx, [0x42AE1010]

mov eax, [ebx]

call eax

call [0x42AE101C] call [0x42AE1010]

mov ebp, esp

mov eax, [ebp-40]

call eax

call [0x42AE101C] call [0x42AE1010]

mov ebp, esp

mov eax, [ebp-40]

call eax

3

4

5

6

7

8

Figure 4.1: The patterns of code fragments of Sapphire worm and its metamorphic version.

differences between two variants of the same malware.

4.2.2 Pattern Matching

The purpose of pattern matching is to determine if two code fragments are similar

enough to exhibit functional equivalency. The proposed method does not produce a formal

proof of equivalence. Not only is that undecidable, but malware variants may in fact

compute somewhat different results. Rather, we consider similarity in system or function call

behavior to be strong evidence that programs have a similar purpose. The two requirements

for defining patterns and the resulting pattern matching algorithm are:

1. The pattern derived from one malware program should be very different from patterns

derived from other programs, whether benign or malware of another type.

2. Patterns derived from metamorphic variants of a single malware program should be

very similar.

The matching algorithm is defined as follows. Two code fragments k and l are

given, where k may be, for instance, a known instance of malware. The pattern for k has

been computed and is represented as P k = {Uk
1 , ..., Uk

Nk
}. The pattern for l has been

computed and is represented as P l = {U l
1, ..., U l

Nl
}.

Let similarity scores be real values between 0 (minimum similarity) and 1 (max-

imum similarity). Suppose similarity scores between all pairs of subpatterns, where one
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subpattern is taken from P k and one subpattern is taken from P l, have been computed.

A pattern matching of k and l is a one-to-one assignment from the set of subpat-

terns of k to the set of subpatterns of l. A maximum matching is one that includes all of

the subpatterns of k, and/or all of the subpatterns of l. A maximum weighted matching

is one that maximizes the sum of the similarity scores of the pairs of subpatterns that are

matched. The value or score produced by a maximum weighted matching W is equal to the

mean of the similarity scores of pairs of subpatterns that are present in that matching:

M(P k, P l) =

∑

〈Uk
i ,U l

j〉∈W

score(Uk
i , U l

j)

max(Nk, Nl)
(4.1)

A maximum weighted matching is an optimistic approach to computing the simi-

larity between two code fragments. The process of deriving and matching patterns should

not be greatly affected by small errors in disassembly and data flow analysis, or by current

program obfuscation techniques. These claims are evaluated in section 5.3.

Pattern matching is performed after similarity scores are computed for all pairs of

sub-patterns. For each such pair of sub-patterns, the similarity score of all pairs of elements

is computed, where one element is taken from the first sub-pattern and the other element

is taken from the second sub-pattern. From this, a maximum weighted matching of the

elements of the two sub-patterns is computed in the same way as mentioned before. The

similarity score of this pair of sub-patterns is then the mean of the similarity scores of pairs

of elements that are matched.

Finally, computing the similarity of two elements involves comparison of the in-

structions or instruction sequences (still in their intermediate form) in the two elements.

This step finds a maximum weighted matching between the instructions in the two ele-

ments. To do this requires computing the similarity between any two instructions, using

as input their intermediate forms. The computation is only an estimate of the similarity

between instructions. Therefore, a heuristic method is used. This method first computes

the similarity between operation types. As an example, add and subtract operations are

deemed to be similar, while add and call are not. The comparison of operands checks for

each operand pair whether the addressing mode and the operand values (when they can be

determined) are the same, and scores them based on closeness. Closeness of operands is

weighted more heavily than closeness of operation types when computing a final similarity
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0.1 0.2 1 0.2 0.1 0.2 0.1 1
0.1 0.2 1 0.2 0.1 0.2 0.1 1

0.05 1 0.2 1 0.05 1 0.05 0.2
0.73 0.05 0.1 0.05 0.73 0.05 1 0.1
0.05 1 0.2 1 0.05 1 0.05 0.2

1 0.05 0.1 0.05 1 0.05 0.73 0.1
0.05 1 0.2 1 0.05 1 0.05 0.2

1 0.05 0.1 0.05 1 0.05 0.73 0.1

PA

PB

Figure 4.2: The maximum weighted pattern matching of code fragments of the Sapphire
Worm and a metamorphic variant, whose patterns are shown in Figure 4.1. Each Cell is
a similarity score of two subpatterns, one from pattern PA, and one from pattern PB.
The marked cells show the maximum weighted matching. The score of pattern matching
M(PA, PB)=8/8=1.

score for two instructions. This computation is designed to be accurate enough to capture

most obfuscations used in practice. Implementation details on the instruction comparisons

are provided in next subsection.

Figure 4.2 shows an example of the maximum weighted matching process for the

two patterns shown in Figure 4.1.

A software prototype of the proposed method has been implemented, based on the

ideas described above. The Hungarian algorithm [55] is a well known method for solving

weighted matching problems and was used in the implementation. The complexity of this

algorithm is approximately O(max2(Nk,Nl)). Although the Hungarian algorithm has a

polynomial running time, this could still be undesirably slow. For instance, a large program

whose code size is measured in MB can easily produce thousands of subpatterns. Therefore,

when the number of subpatterns exceeds a threshold, an approximate version of maximum

weighted maching is used.

4.2.3 Implementation Details

This subsection presents a few details that are critical for repeating our implemen-

tation.

Disassembly

The implementation is targeted at the Intel [2] x86 instruction set which contains

variable length instructions. A brief introduction is given at Appendix A.2. The disassembly

engine is built on and modified from 1) the x86 instruction set parsing capability of an
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typedef struct  {

BYTE state;

BYTE length;

BYTE type; 

BYTE subtype; 

         BYTE desMode;

BYTE srcMode; 

BYTE rBit; 

         BYTE immBit;

BYTE dSeg; 

BYTE sSeg;

BYTE dBase;

BYTE dIndex;

BYTE sBase;

BYTE sIndex;

         BYTE scaler;

UN imm; 

int offset; 

DWORD next1; 

DWORD next2; 

DWORD status; 

DWORD preInstr; 

UN refValue;

DWORD addr;

} _instruction;

typedef struct  {

BYTE type;

BYTE subtype;

BYTE desMode;

BYTE srcMode;

         BYTE rBit;

         BYTE immBit;

         BYTE dBase; 

BYTE dIndex;

BYTE sBase;

BYTE sIndex;

BYTE scaler;         

UN imm;

int offset; 

DWORD addr;

UN dBvalue;

UN dIvalue;

UN sBvalue;

UN sIvalue;

UN refvalue;

char *fname;

} instructionStr;

(a) (b)

Figure 4.3: The data structures of intermediate instruction representation.

existing disassembler [105]; 2) the Windows PE program header processing capability of

pedump.c supplied in MSDN [106]; 3) the Linux ELF program header processing capability

of rand elf3.c supplied in a binary randomization tool [107]; and 4) the disassembly

algorithm of obfuscated executables according to the description of [41].

Intermediate Instruction Representation

Each binary instruction is converted to an intermediate representation for the

convenience of analysis. This preserves its information generated during the analysis and

the instruction semantics. There are two forms of intermediate representation structures (as

shown in Figure 4.3) which are used in different phases. The structure shown in Figure 4.3(a)

is used in the disassembly phase and the control flow analysis phase, where raw instruction

information is recorded. The structure shown in Figure 4.3 (b) is used in the data flow

analysis phase, where the processed information (such as interim results of propagated

data) is recorded.

There are four categories of fields in the intermediate representation structures.

The first category is the instruction’s operation type as indicated by the field type and
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subtype. Using the operation type instead of the opcode2 as a way to record the actual

operation has two functions. It allows many instructions that are functionally equivalent

to be identified to a limited degree as previously discussed, and it assigns them to the

same type and subtype. It also reduces the coding complexity and improves the runtime

performance. Otherwise, there would be many functions that have to be coded in such a

way that resembles the instruction parsing. These functions would be designed for control

flow analysis, data flow analysis, and instruction comparison upon two patterns matching.

In our implementation, the instructions are classified into eight major categories and within

each category multiple sub-categories are defined. The eight major categories are introduced

in Appendix A.2.

The second category is the instruction’s operand addressing modes as indicated by

the field desMode and srcMode. The third category is the instruction’s operands that include

fields rBit, immBit, dSeg, sSeg, dBase, dIndex, sBase, sIndex, scaler, imm and offset.

Operands are classified as being of type source (read only) or destination (write only or

read/write). The addressing modes indicate how the operands are addressed. The IA-32

[2] offers 24 memory addressing modes with flexible combinations of registers (i.e., with the

base, with or without index register, and with or without a scaler to the index register),

displacement or immediate number. The field rBit and field immBit indicate the bytes of

the corresponding register(s) and the immediate number (1, 2 or 4 bytes). The information

reflected by those two categories is obtained during the instruction parsing phase which is the

first phase of disassembly. Sometimes, the information is explicit through the instruction

encoding. Sometimes the information is implicit and will require an examination of the

instruction’s semantics as specified by the manual [2]. For instance, instruction loop, IMUL,

MOVS, RCL, and many others belong to the latter case.

The fourth category is the accessorial information fields, that include the remain-

ing fields that are generated during the disassembly, control flow analysis, and data flow

analysis phases. The fields dBvalue, dIvalue, sBvalue, and sIvalue record the values

of the corresponding registers as indicated by dBase, dIndex, sBase, and sIndex. If an

instruction has an indirect addressing of operands, the fields addr and refValue will record

the address and the referenced value if they are available.

There are five data types (BYTE, DWORD, UN, int, and char *) in the two data
2opcode is a term used in [2] to denote an instruction’s operation. The opcode table can be looked up in

[2].
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structures shown in Figure 4.3. In a 32-bit machine, the latter four types have 4-byte

lengths. Type BYTE has a 1-byte length. Type UN is a union type that is a union of char,

short, and int. In an immediate addressing mode, an immediate number could have 1, 2,

or 4 bytes. Type UN is designed to deal with such issues.

The order arrangement of the fields in the data structures of intermediate in-

struction representation considers optimization of data structure allocation in memory to

minimize the gap occurred in alignment.

Heuristic Instruction Comparison

Instruction comparison is the basis of pattern matching. To compute the similarity

between any two instructions, their intermediate representations are used as input. The

computation is only an estimate of the similarity between instructions. Therefore, a heuristic

method is used.

Figure 4.4 shows the high level procedure to process the comparison. The instruc-

tion comparison involves four components, including operand type, first source operand,

second source operand, and destination operand comparisons. In Figure 4.4, these are

indicated as cmpType, cmp1stSrcOperand, cmp2ndSrcOperand, and cmpDesOperand proce-

dures. These comparison can deal with many obfuscations of a single instruction. This

heuristic instruction comparison is not intended or capable of dealing with multiple instruc-

tions obfuscation, such as using two or more instructions that are semantically equivalent

to substitute an instruction, However, the data flow analysis, which does simple symbolic

execution, can handle or mitigate this problem of multiple instructions obfuscation to a

limited degree.

The similarity between operation types is computed first. This process resembles

a simple look up operation. The closeness of the operation types that are represented by

the fields type and subtype are empirically pre-determined.

The comparison of operands checks for each operand pair whether the addressing

mode, and their operand values (when they can be determined) are the same and scores

them based on closeness. For most frequently used instructions, there are at most three

operands. (An exceptional example is instruction pushad which pushes all general-purpose

registers into stack. Therefore it has more than 3 operands. In this case, special treatment

can be adopted.)
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result = cmpType(instr1,instr2)

srcSim = cmp1stSrcOperand(instr1,instr2)

immSim = cmp2ndSrcOperand(instr1,instr2)

desSim = cmpDesOperand(instr1,instr2)

result = normalize(result,srcSim,immSim,desSim)

type is not similar

type is similar

Figure 4.4: Instruction Comparison Flow Chart.

(instr1.Src, instr2.Src)

(reg1,reg2)

(reg1,imm2) (reg1,mem2)
(imm1,reg2)

(imm1,imm2) (imm1,mem2)

(mem1,reg2)

(mem1,imm2)
(mem1,mem2)

ID(reg1,reg2)

... ...

=

value(reg1,reg2)

(unknown1,unknown2)
(unknown1,known2)

(known1,unknown2)

(known1,known2)

equalValue(reg1,reg2)

= ≠
srcSim += 2 srcSim += 0.5

...

...

srcSim = 0

srcSim += 1

srcSim += 0.5

≠

Compare 

addressing 

Mode

Compare 

Operand ID

Compare 

Operand 

Value

Finalize 

Comparison

Figure 4.5: Partial Instruction Source Operand Comparison Decision Tree.
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Figure 4.5 abstracts the comparison of first source operand pair as a decision tree.

After each decision is made, a partial score is given. The partial score is an empirical

value which is set to reflect the importance of the corresponding equation. For instance, in

two malware programs, one of which is a metamorphic version of the other, there are two

instructions mov [eax + 01h], edx and mov [ebx + 01h], edx. The two instructions

could be a case of obfuscation using the register reassignment technique. (For more details,

please refer to Appendix A.3.) In this example, the source operands are both register

addressing and they are edx. According to the decision tree in Figure 4.5, if the values

of edx can be determined as a result of data flow analysis, and they are equal, then the

similarity score for this source operand comparison is 3.5. If the values of edx can be

determined but they are different, then the similarity score is only 2 instead. A similar

approach is applied in comparison of the second source operand pair and the destination

operand pair. The final instruction comparison score will be normalized to 1.

Closeness of operands is weighted more heavily than closeness of operation types

when computing a final similarity score for two instructions. This is due to the observation

that it is less likely for two unrelated instructions to have the same operands than to have

the same operation types. The ratio is empirically set at 3 over 7 for closeness of operand

type to closeness of operands. The closeness of different operands are weighted slightly

differently. The closeness of destination operands weights slightly heavier. If there are two

operands, one being source and the other being destination, the ratio is 3 over 4. If there

are three operands, two being source and one being destination, the ratio is 2:2:3.

In the next section, the preliminary results from testing of this software are de-

scribed.

4.3 Evaluation

The proposed method computes the similarity between two binary executables

based on the characteristics described above. If one executable is derived from another (i.e.,

is a variant or version of another), the computed similarity should be very high. Otherwise,

the computed similarity should be low, with a large gap allowing these two cases to be

easily distinguished.

The proposed method has been fully implemented. This implementation can ana-

lyze executables for both the Linux and Windows operating systems, compiled for the Intel
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x86 instruction set architecture.

Three sets of inputs were used to test this hypothesis experimentally. The first set

of inputs consisted of benchmark programs (compiled for Linux) that were processed using

a tool for fine-grained randomization of commodity software [107]. The second set of inputs

consisted of variants of known Windows viruses, downloaded from the VX Heavens [20]

website. The third set of inputs consisted of various releases of the GNU binutils programs,

compiled for the Linux platform. For each set, the similarities of known variants or versions

were computed, and when it made sense to do so, the similarities of unrelated programs

(neither derived from the other) were computed as well. The experiments and the results

are described in more detail below.

We were not able to use any existing tools designed to produce an obfuscated ver-

sion of an arbitrary executable program that contained all common obfuscation techniques.

Previous work [37] manually generated the obfuscated test cases with simple obfuscation

techniques. The work [35] generated obfuscated test cases on programs written in visual

basic language to test the resilience of commercial anti-virus software to metamorphic mal-

ware.

4.3.1 Randomized Executables

To test resilience to obfuscation, a set of programs was randomized using the ASLP

tool [107]. This tool uses binary rewriting to rearrange the static code and data segments of

an executable file in a random way. It performs fine-grained permutation of the procedure

bodies in a code segment and of data structures in the data segment. This randomization

technique can invalidate the use of static signatures for recognition of malicious code. This

experiment was performed on a machine running Fedora Core 1, with a Pentium 4 CPU of

2.26GHz and 512M of RAM.

ASLP was applied to programs taken from two well-known benchmark suites: the

SPEC CPU2000 programs [108] and two web server programs (the Apache web server httpd

[109] and and the GazTek web server ghttpd [110]). The similarity between the randomized

and original versions of each program was then computed using the proposed method. The

results are shown in Figure 4.6.

Of these 12 test cases, 10 have similarity scores above 95%. A perfect matching

tool should return similarity scores that are exactly 100% since the randomized programs
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Matching Code
Score Size (K) Disass. Pattern Gen. Matching

SPEC twolf 98.48% 164.70 9.24 4.44 0.34
CPU2000 mcf 97.81% 7.86 0.015 0 0.01

gcc 99.39% 1158.36 415.6 210.41 56.52
bzip2 99.23% 29.18 0.09 0.05 0.01
vortex 99.77% 399.82 44.75 23.17 4.05
crafty 99.90% 173.75 7.85 3.57 5.28

perlbmk 95.74% 483.12 123.8 66.31 2.6
parser 99.07% 104.29 5.29 2.71 0.22

gzip 76.87% 31.43 0.11 0.06 0.01
vpr 79.94% 100.54 1.79 0.98 0.26

Apache httpd 99.22% 300.69 42.46 20.48 323.06
Misc ghttpd 99.42% 7.60 0.02 0.01 0

Running Time(s)

Figure 4.6: Pattern matching between randomized and original programs. Programs are
from SPEC CPU2000 benchmark, the Apache web server httpd, and the GazTek web server
ghttpd. Code size refers only to the code segment size, not the size of the entire executable
program.

and the original ones do have the same functionalities. However, our pattern matching is a

heuristic approach that can only achieve approximations in program analysis. Nevertheless,

the evaluation results shown here demonstrate that program changes due to randomization

do not affect the ability of the proposed method to recognize the similarity in function

between normal and randomized versions. The proposed method of analysis, using system

calls as a point of reference, is robust to such changes in program structure.

4.3.2 Variant Detection Evaluation

Virus and malware writers have manually created many variations of common

exploits, in an attempt to evade virus-checking tools. Hundreds of such examples can be

found at popular hacking web sites. Such examples make use of a wide range of obfuscation

techniques.

One such website is VX Heavens [20], which identifies programs that are variants

of the same malware. More than 200 pairs of malware mutants were downloaded from this

website. These program instances were selected from multiple malware categories. Among

these instances, 36.6% were worms, 18.3% were viruses, 20.8% were backdoor programs,

and 16.3% were trojan programs. The remainder of the programs included flooders and ex-

ploits. The tested malware programs had sizes ranging from 8K to 1M bytes. We observed

some malware programs and their mutants employ multiple commonly used obfuscation
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Figure 4.7: Malware Variants Pattern Matching. A y-axis value is an accumulative value.
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Figure 4.8: Malware Variants Pattern Matching. A y-axis value is an accumulative value.

techniques. For instance, the simplest obfuscation technique used is register renaming. A

more complicated obfuscation technique is using functionally equivalent instruction substi-

tution. The code addresses of the mutants can be very different. The relative offset in

corresponding function call instructions are frequently adjusted. Sometimes, even within

a single program, the same library functions may be imported multiple times at different

addresses, although at runtime, these may be reloaded to the same address. Recogniz-

ing that two call instructions refer to the same target address requires data flow analysis

techniques. A much more common case is that new functions or behaviors are added or

revised in mutants. There is another obfuscation that is not considered here but is often

encountered when downloading the malware programs. A non-trivial number of malware

programs use encryption. The limitation of the proposed approach will be discussed in the

next section.
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In the first test, similarity scores were computed for pairs of executables that

represented the same attack. A histogram of the resulting similarity scores is shown in

Figure 4.7. The great majority of pairs are easily recognized as variants of the same function.

For example, over 90% of the pairs have a similarity score of .7 or greater. These mutants

represent the state of the art in mutation and obfuscation of malware, and thus are a

worthwhile test case for any program attempting to recognize metamorphic variants in an

automated way. The results indicate that comparison with a previous version of malware

will, with high probability, identify a new version of the malware.

It is also important to measure the similarities computed between programs which

are not variants of the same malware. In the second test, the malware programs were ran-

domly paired with each other, excluding all instances that were identified on VX Heavens as

being variants of the same malware. Similarities for the resulting pairs were then computed

using the proposed method. Figure 4.8 shows the results. The computed similarities are

very low, with less than 10% have a similarity score of 0.1 or greater (or to say, with over

90% having a similarity score of below .1). Approximately 1% have a similarity score of .7

or greater. It may be that malware even in different families are derived from a common

code base, explaining these results. Further investigation is required.

For these programs, a similarity score of .7 would be an optimal threshold for

concluding whether two programs, one of which is known to be malicious, are functionally

equivalent. While this threshold does not perfectly distinguish malware variants from non-

variants, keep in mind that this is a tough test case: identifying hand-crafted metamorphic

malware, and distinguishing it from other malware, rather than distinguishing it from non-

malicious code.

4.3.3 Version Difference Evaluation

The third experiment tested how well the proposed method recognized variations

between different versions or releases of a program. Such versions are not intentionally

obfuscated, but represent another case of software that is derived from a previous version

of a program. They are therefore a useful test of the proposed method.

Releases 2.10 through 2.17 of the GNU project “binutils” binary tools [40] were

used for this purpose. These tools are used for compiling, linking, and debugging programs.

They make use of several common libraries for low level, shared functions. Different releases
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Figure 4.9: Pattern Matching of GNU Binutils programs. Each pattern matching is per-
formed between two consecutive versions of a GNU Binutils program.
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Figure 4.10: Pattern Matching of GNU Binutils programs. Each pattern matching is per-
formed between two consecutive versions of a GNU Binutils program.

will represent varying degrees of modification to the original program code.

Figure 4.9 and Figure 4.10 show the result of computing the similarity between

consecutive releases of each program, using the proposed method. For the great majority

of cases, the computed similarity was greater than .7. The cases where this was not true

are instructive to examine (see Figure 4.11 and Figure 4.12. Between release 2.10 and 2.11,

code sizes of the utilities increased by approximately 50%, indicating a major revision, and

the computed similarity scores were correspondingly lower (around .5). Figures 4.13 and

4.14 compare both release 2.10 and release 2.11 to release 2.17. It is clear that release 2.11

is much closer (in size and similarity) to 2.17 than release 2.10 is to 2.17. Also, between

release 2.13 and 2.14, the size of c++filt grew 10-fold, indicating essentially a replacement

by a new program; the computed similarity in this case was close to 0.
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Figure 4.11: Size comparison of GNU Binutils programs. Each size comparison is performed
between two consecutive versions of a GNU Binutils program.
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Figure 4.12: Size comparison of GNU Binutils programs. Each size comparison is performed
between two consecutive versions of a GNU Binutils program.
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Figure 4.13: Pattern Matching of GNU Binutils programs. Each pattern matching is per-
formed between version 2.10 and 2.17, or version 2.11 and 2.17 of a GNU Binutils program.
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Figure 4.14: Size comparison of GNU Binutils programs. Each size comparison is performed
between version 2.10 and 2.17, or version 2.11 and 2.17 of of a GNU Binutils program.

These results indicate that the proposed method is effective at computing the

degree of similarity between programs in a way that is meaningful and that is not sensitive

to modifications that preserve a program’s function.

4.4 Discussion

4.4.1 Comparison with Previous Work

This section compares the current work with three previous methods [56, 37, 58]

which statically analyze program semantics to detect metamorphic malware.

As pointed out in [37], the control flow graph comparison method of [56] can only

handle very simple program obfuscations. For example, the detection algorithm only allows
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noop instructions to appear between matching instructions. By comparison, the method

proposed in this chapter can handle a much wider range of obfuscations than this. It can

also detect program mutants that have similar but not identical behaviors.

The method of [37] uses semantic templates to detect malware that has certain

common behaviors. A template is manually generated by studying the common behavior

of a set of collected malware instances; how to generate a general semantic template is not

addressed. Our method, by contrast, proposes an automatic pattern generation method that

characterizes a program’s semantics. Furthermore, we argue that the proposed method is

harder to bypass. The proposed method uses maximum weighted matching to be tolerant

to inaccurate program disassembly and static analysis.

Chouchane and Lakhotia [58] use “engine signatures” to assist in detecting meta-

morphic malware. That work, however, can only deal with known instruction-substituting

metamorphic engines. There are many ways to create metamorphic engines, by no means

limited to instruction substitution. Moreover, their technique can be defeated by shrinking

substitution methods. Our proposed method does not rely on specific engines. It charac-

terizes and compares a program’s semantics more generally. It uses control flow and data

flow analysis and is more robust against complex metamorphism.

4.4.2 Limitations

There are two main limitations that can cause the failure of the proposed method.

The major limitation is due to the use of static analysis. Since static analysis does not exe-

cute the program, run-time information is not available to derive a more accurate pattern.

A case in point is static disassembly, which is not guaranteed to be 100% accurate [41].

Various techniques, such as indirect addressing, self-modifying code, and dynamic code

loading can lower the accuracy of static disassembly and result in an inaccurate control flow

analysis. Many techniques to improve disassembly accuracy have also been proposed [42],

but are not currently implemented in our prototype. We also adopt various heuristics ap-

proaches in program analysis, which are sources that result in inaccurate pattern generation

and matching. The set of heuristics approaches used in this work includes the instruction

comparison, limited symbolic execution which only performs constant value propagation,

setting a limit on the depth of control flow graph traversal to compute maximal instruction

traces, and using only target addresses of system calls for pattern generation.
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The second major limitation results from code evolution. Similarity of a mutant

to an original code version largely depend on how the new instance evolves. If the majority

of functionalities (i.e. the malware payload) of a mutant is replaced, only a small part

will be matched, resulting in a low similarity score. In addition, the malware writer can

purposely insert random “junk” functionalities in terms of actual system calls made to lower

the matching score. Theoretically, if the number of “junk” functionalities goes unbounded

or infinite, the proposed method will likely fail. To address this issue, it may be necessary

for the program pattern to be focused on specific functions of the malware, rather than on

the entire program’s function. For instance, a whitelist of system calls or library calls can

be built to filter out common functionalities that are usually unimportant such as printf.

4.5 Summary

This chapter presented a new approach to characterize and compare program se-

mantics. A direct application of the proposed method is to recognize metamorphic mal-

ware programs, which conventional signature-based detection methods are less successful

at detecting. The proposed method has been prototyped and evaluated using randomized

benchmark programs, various types of real malware programs, and multiple releases of the

GNU binutils programs. The evaluation results demonstrate three important capabilities

of the proposed method: (a) it shows great promise in identifying metamorphic variants of

common malware; (b) it distinguishes easily between programs that are not related; and,

(c) it can identify and detect program variations, or code reuse. Such variations can be due

to insertion of malware (such as viruses) into the executable of a host program, or programs

revision. Thus an indirect application of the proposed work is to help localize an occurrence

of one fragment of code inside another program using the maximum matching.

Future work will consider more accurate analysis of the parameters passed to

library or system functions. We also believe the method’s ability to identify similarities

between binary executables will be useful for code attribution and other reverse engineering

purposes.

In the next chapter, we are going to introduce the third work which automatically

generates common malware behavior patterns for the detection of the metamorphic malware

or new malware instances. It addresses the limitation of the proposed work of this chapter.
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Chapter 5

Automated Generic Malware

Pattern Generation

The chapter aims to propose an automated approach to discover common behavior

patterns from a set of malware samples that can be used to detect metamorphic malware

or new malware instances. This approach will improve the applicability of the semantic

malware detector which is the second technique proposed in this dissertation. It could

result in an about 80% reduction in semantic pattern population to detect known and

new malware instances. Moreover, it will be more robust in the event of a junk behavior

pollution attack than the malware detector is. This new approach combines static analysis

and data-mining techniques.

5.1 Overview

It is a challenging and non-trivial problem to detect metamorphic malware and

new malware instances, which pose great challenges to the current signature-based detection

methods [35, 36, 37, 38]. Advanced detection techniques such as [57, 37, 69, 70], in contrast,

focus on the specification and identification of malicious behaviors demonstrated by different

families of malware. Examples of malicious behaviors include self-unpacking, hooking into

web browsers and modifying critical data at load time. Since these approaches are not

tailored to specific malware instances but specify the general behaviors of an entire family of

malware, they are more robust against the mutated attacks that preserve these behaviors.

However, the development of these behavior specifications is an onerous manual process
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which is considerably slower than the occurrence of new types of malware.

The goal of the present work is to propose an automated approach to discover a

common behavior pattern from a set of malware samples that can be used to detect meta-

morphic malware or new malware instances. This approach will improve the applicability

of a semantic malware detector [111]. First, given the overwhelming number of malware

types and the malware mutants, the feature which uses common behavior patterns instead

of a pattern per malware type increases the appeal and deployment of such metamorphic

malware detectors by reducing the need for semantic malware pattern generation. Second,

the feature which uses common behavior patterns instead of a pattern per malware type

increases the malware detector’s robustness to a junk behavior pollution attack as pointed

out in [111].

The proposed method abstracts malicious program behaviors in the same way as

the second proposed work of this dissertation [111]. It embraces static analysis techniques

to analyze malware binary programs, and characterizes the program behaviors based on

system calls invoked by the malware. Different from [111], this chapter focuses on the

problem of how to find common behaviors among an entire family of malware instead of

generating a pattern per single malware instance and its mutants. To find a common mal-

ware behavior pattern, a hierarchical clustering data-mining technique is used to mine the

common malicious behaviors among the disassembled malware patterns that are outputted

after the static analysis.

We made an observation that there could be common behaviors among an entire

malware family that are unique enough for identification of the family. This observation

starts with manually analyzing the source code of seven bot programs found through the

Internet including the website in [39]. A brief description of bot software has been given in

Chapter 1. The seven bot refers to sdbot, agobot, spybot, jrbot, rxbot, ciscobot, and

forbot. Consistent with a previous study [10], these bot programs show similar structures

and functionalities. Examples include a) providing the capability to disable antivirus soft-

ware; b) registering the bot program in the system service registry to make it restartable; c)

looping structure to detect the network connectivity in order to join a bot communication

channel and wait for control commands; d) upgrade/uninstallation of the bot program; e)

a sequence of if-else statements for processing attack commands received from external

botmasters, etc [10]. Although different bot programs may vary in attacking abilities, such

as installation of backdoor and keylogger programs which can be conveniently customized
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Figure 5.1: Overview of procedure for common behavior pattern generation.

by different malware writers, the bot family members share basic behaviors. Some of these

behaviors are easily reflected through a set of system calls in their binary images and can

be discovered. A reflection of these commonalities is that the evolution of malware devel-

opment is derivative in nature. It is not a surprise that the source code of many malware

is available and easily obtained from web sites such as [39].

This chapter uses static analysis and data-mining techniques to automatically find

these shared program behaviors that can be unique enough for identifying the malicious

software. Data mining methods are frequently used to detect patterns in a large set of data

and have already been applied for mining benign behavior models for intrusion detection

[59, 60, 61, 62] or malicious behaviors for malware detection [63]. The key to a data

mining based behavior modeling is the extraction of behavior features. In this work, we

resort to static analysis to extract program behavior features. Figure 5.1 illustrates the

procedure of the proposed method. Input to the procedure is a set of malware binary

programs from the same malware family such as the malicious bot software. Output from

the procedure is the common behavior pattern of these malware samples. The outputted

pattern can be directly used by a semantic-aware malware detector such as [111] for detection

of this malware family. There are three notable functional components in the procedure.

A static analyzer is the entry functional component which is responsible for processing

the primary malware samples to derive their behavior patterns. A set of corresponding

program behavior patterns are generated thereafter and dumped into separate files. They

are the intermediate results for the other components to further process. The static analyzer

is implemented according to the work in [111] which can effectively and statically analyze

obfuscated malware program behaviors based on system calls. A pre-clustering processor
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is the intermediate functional component which coarsely clusters the program behavior

patterns to prepare a classified data set for improving the performance and accuracy of the

final functional component, a mining engine. The pre-clustering processor outputs two

types of file sets as the intermediate results with which the mining engine will work. One

set is clusters of dissected sub-patterns. The other set is files of pair-wise similarity scores

computed to measure the similarity between a pair of sub-patterns from a same cluster.

The mining engine takes these results along with the primary program patterns and mines

popular behavior patterns.

The proposed method has three notable features. First, it is fully automated.

Given a set of malware programs, the proposed method discovers the common malicious

behavior without any human intervention. Second, it works completely on binary code and

requires no source code of the malware. Finally, it looks for similar behaviors in addition

to the completely identical ones. Focusing only on identical behaviors makes the mining

procedure easy, but potentially misses common malicious behaviors that involve intentional

or non-intentional program obfuscation. This feature is reflected in the similarity score

computation for each coarsely grained cluster.

Building program behavior models using various mining techniques for intrusion

detection purpose is not a new topic [59, 60, 61, 62]. However, these methods construct

benign behavior models and detect deviated behaviors via run-time monitoring. This chap-

ter targets a different aspect. It uses data mining techniques for mining malicious behavior

patterns. Moreover, the detection of malware using derived malicious behavior patterns is

a static pattern matching process. A recent paper [46] developed a novel mining technique

to specify malicious program behaviors by mining differences of execution traces between

a malware sample and a set of benign programs. However, a general limitation to this

dynamic execution based approach is the difficulty of simulating the malicious execution

environment to obtain all possible malicious execution traces. The work by Schultz et al.

[63] is closest to our work. It built a framework that uses three different data-mining algo-

rithms to train multiple classifiers on a set of malicious and benign executables to detect

new malware instances. The training binaries are statically analyzed to extract the prop-

erties being used, such as Dynamic Linked Libraries (DLLs), strings, or byte sequences of

the binaries. Our approach uses a different feature extraction and a different data-mining

approach. Moreover, the mined common behavior patterns are a byproduct that can be

utilized in malware analysis. To summarize, compared with other mining approaches for
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analyzing program behaviors, the proposed new approach is entirely static analysis based,

fault-tolerant, and easy to deploy. Therefore, it can be an effective complementary approach

to malware defense.

The proposed method has been implemented and evaluated on real world malware

programs and benign programs (i.e, Windows XP Professional System programs and several

application programs). The malware samples are obtained from two trusted sources: Cyber-

TA project [18] and Johns Hopkins University Botnet research project [112]. A set of

experiments was performed to test the quality of the common behavior patterns which were

generated with different parameter configurations. The evaluated results under an optimized

parameter configuration in terms of detection rate and false positive rate are 94% and 8.3%

respectively. The evaluated results under a second optimized parameter configuration have

a much lower false positive rate which is 0.32% and a detection rate of 78%. In addition,

this method results in an about 80% reduction in semantic pattern population to detect

known and new malware instances when it is compared with the second technique proposed

in this dissertation.

In the next section, the proposed method and the three functional components

will be introduced in detail.

5.2 The Proposed Work

In this section, we present the various components of the proposed work (e.g.,

the static analyzer, pre-clustering processor, and mining engine) that automatically gener-

ate common behavior patterns for an entire family of malicious software. The generated

patterns can be used by a semantic-aware metamorphic malware detector to detect such

malware families and provide forward detection of new malware mutants.

5.2.1 Static Analyzer - extracting behaviors from binary code

To mine the common malicious behaviors the first step is to extract the program

behavior features. The feature extraction decides the quality of a data mining based ap-

proach. In this work, we resort to static analysis to extract program behaviors. As pointed

out by M. Christodorescu et al. [37], to analyze malicious behaviors we need to look into

program semantics rather than just its syntactic features in order to better deal with ob-

fuscated malware or numerous malware mutants. We adopt the second technique of this
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dissertation which is presented in Chapter 4, which is fully based on automated static

analysis of executables, to summarize and compare program behaviors semantically and ef-

fectively. We adopt this approach for extracting behaviors from binary code in the present

work. Next, the highlights of the adopted static analysis method [111] are briefly introduced

to lay the necessary foundation.

mov ebx,  567

mov ebx, esp

mov eax, ebx

mov eax, 123

call [eax]

CFG 
Snippet

(a)

(b)

call  [567]

call  [esp]

call  [123]

Figure 5.2: Pattern Generation Illustration. (a) A snippet of the control flow graph after
disassembly of a program. Only the instructions that have data flow dependency to the
call instruction are shown in each block. Three maximal instruction traces for the call
instruction are shown as dashed lines. (b)The generated sub-pattern. It is the result of the
simple symbolic execution of the maximal instruction traces and is stored in an intermediate
representation format.

A program pattern is derived based on the system calls it makes. It characterizes

the program’s behaviors combining its structure and functionality. Essentially, the goal is to

extract the system call instructions and the instructions that prepare the parameters used

by them. This is done through control and data flow analysis of the disassembled program.

Currently, the only type of parameter considered is the target address of a system call. To

derive a pattern, a control flow graph (CFG) is derived first. Based on the CFG, all the

system call instructions are found. Starting from a found system call, a set of maximal

instruction traces are found by backward data flow analysis. A maximal instruction trace is

the longest sequence of instructions that have data-flow dependency on a call instruction.

Simply put, a maximal instruction trace forms a def-use chain to a system call instruction.

A sub-pattern is generated for each found system call after performing a simple symbolic
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execution to aggregate the maximal instruction traces and propagate the possible values

of call target addresses. Eventually, all the sub-patterns consist of a complete program

pattern. Figure 5.2 shows a simple example to illustrate this pattern generation.

There are several outstanding advantages of such feature extraction. First, it

improves resilience against dedicated program obfuscation. According to the experimental

evaluation of [111], the adopted method can effectively recognize metamorphic malware

(through the comparison of randomized and original benchmark programs) and malware

mutants (through the comparison of real world malware examples). Second, it enhances the

accuracy of evaluating the similarity of two behaviors. It is more than a simple count of the

number of system calls a program issues, or a straight comparison of instruction sequences

that can be carefully manipulated to demonstrate differences. By computing the maximal

instruction traces for a system call, a generated pattern preserves some characteristics of

the way that a program interacts with the underlying operating system. In this way, the

adopted method is able to measure the similarities among malware mutants or different

releases of benign software. Third, it implies a feasible way to dissect program behaviors

for comparison. A sub-pattern is generated for a single system call and characterizes how

the system call is issued to interact with the operating system. It is the smallest and

relatively complete entity that is found to have such a capability. Dissection of program

behaviors based on sub-patterns for comparison of program similarity is feasible and has

demonstrated effectiveness through the evaluation done by [111].

The static analyzer is an important component of the proposed work and it is the

key to the success of the data mining approach which is to be discussed next. However, the

focus of the proposed work is the data mining approach that utilizes static analysis as its

feature extraction procedure to find the distinctive and common characteristic behaviors

among a set of malware programs.

5.2.2 Pre-clustering Processor - preparing classified data sets

Using a classified data set is expected to improve the performance of a data mining

tool by reducing unnecessary computing and lead to more accurate results. This subsection

discusses the approach of the pre-clustering processor, the intermediate component which

is responsible for preprocessing the raw data sets to prepare classified data sets. The raw

data sets consist of the semantic program patterns extracted by the static analyzer. The
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pre-clustering processor executes two actions. First, it performs classification on semantic

program patterns in the raw data set. This results in coarse-grained clusters that have

similar types of dissected sub-patterns and potentially have common behaviors. The finer

classification is performed by the mining engine in the final stage. Second, the pre-clustering

processor performs computations of entity similarities within each cluster. A mining tool

needs numerical measurement of the relationship or distance between a pair of data items.

Classification

A classification is made based on the granularity of sub-pattern level. A sub-

pattern is generated according to a single system call issued and is the smallest relatively

complete entity which roughly characterizes a program behavior. A single instruction rarely

possesses this capability. There are basically four types of sub-patterns as shown in Figure

5.3. They are all relevant to absolute addressing calls. Relative addressing calls are usu-

ally compilation results of a program’s self-functions. A sub-pattern of type (a) involves a

system call that can be clearly identified with a known DLL name and a function name. A

sub-pattern of type (b) involves a system call whose target address is the sole identifiable

information. Sub-patterns of type (c) and (d) correspond to the cases where system calls

cannot be exactly identified due to various reasons (e.g., limitations of static analysis where

the target address can only be determined at run-time, or some implementation deficiency).

A classification based on type (c) or (d) does not mean that two behaviors in two different

clusters represent distinct behaviors. Proving equivalence of program behaviors is an un-

decidable problem. Instead, according to the way they are issued, they are speculated to

represent different behaviors.

A classification begins with dissecting program patterns into discrete sub-patterns

and categorizing the sub-patterns based on their types as described in Figure 5.3. Three

classification schemes were investigated and Scheme 2 shows advantages over the other

two schemes. Each scheme reflects a different level of granularity in categorizing the sub-

patterns. Figure 5.4 visualizes the three schemes.

Scheme 1 (Low): All sub-patterns are indiscriminately categorized into one

cluster. This scheme actually involves no clustering. This scheme is slower than the other

two schemes and is limited to smaller data sets.

Scheme 2 (Medium): Sub-patterns of type (a) are categorized into discrete
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call [address]

;DLL. FunctionName

call [address]

;unmanaged address

;instruction traces

    ;1                          ;n

call register

(a) (b)

(c) (d)

. . .

;instruction traces

    ;1                          ;n

call [register + offset]

. . .

Figure 5.3: Four types of sub-patterns relevant to (a) direct (known) system calls; (b) direct
(unknown) system calls; (c) indirect system calls with call address stored in register; (d)
indirect system calls with call address stored in memory as specified. This way usually
represents a method dispatch.

multiple clusters, each of which contain sub-patterns that relate to the system calls with

same DLL name and function name. Sub-patterns of other types are categorized into single

clusters. An assumption in the classification of behaviors is that a different system call (i.e.,

one that is imported from a different DLL or has a different function name) represents

a different behavior. This assumption can be relaxed if the proposed method is fed with

pre-determined classification information telling which groups of system calls can possibly

represent similar behaviors. For instance, unicode and non-unicode versions of Windows

library functions can be regarded as implementing the same behaviors. In our prototype

implementation we simply hold this assumption.

Scheme 3 (High): This is a finer classification compared to Scheme 2. The

difference is in the classification of sub-patterns of type (b). System calls casted at different

addresses are considered “different.” After the experimental evaluation, this scheme has

shown to lead to slightly poorer performance of the proposed work. One explanation for

this result is that the same system calls can be casted at different addresses.

Figure 5.17 and Figure 5.18 highlight the comparisons of the above pre-clustering

schemes under the same test conditions. The comparison results show that overly specific

(Scheme 3) or overly general (Scheme 1) classification will lead to an inaccurate pattern

that causes a higher true false positive rate of flagging benign programs as being malicious

or a lower detection rate of detection of malicious programs.
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Figure 5.4: Three schemes of pre-classification.

Similarity Measurement

Paralleling the classification process, similarities among sub-patterns that are from

the same clusters are measured. One similarity score matrix is produced for one cluster.

A non-diagonal entry in this matrix is a numerical value between 0 and 1 that estimates

the similarity degree between two different sub-patterns in this cluster. 1 stands for the

maximum similarity degree.

The function that computes the similarity of a pair of subpatterns is a method of

semantic pattern matching proposed in the second work of this dissertation [111]. It uses a

maximum weighted matching algorithm to find an optimistic match between the elements

of the two sub-patterns. An element of a sub-pattern corresponds to a processed maximal

instruction trace of the subpattern. A heuristic score function is used to calculate the

similarity of two elements. This score function considers several factors including instruction

operation type, operand addressing mode, and operand value and scores them based on

closeness. For more details, please refer to Chapter 4.

5.2.3 Mining-Engine - mining common behavior patterns

The mining-engine is the final component of the proposed work. It mines common

behavior patterns from malware samples. There are three inputs from previous phases,

including the coarse-grained clusters of sub-patterns, the files of similarity score matrixes,

and the original semantic malware patterns. The mining-engine executes two steps. First, it
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finds fine-grained clusters from the coarse-grained clusters. This step involves a data-mining

algorithm. Second, it finds popular fine-grained clusters and chooses their representative

sub-patterns to construct the common behavior patterns.

We use a well-known clustering method, hierarchical clustering, as the underlying

data-mining algorithm to discover fine-grained clusters of sub-patterns. It enables grouping

in data to be discovered simultaneously over a variety of scales by constructing a multilevel

hierarchical cluster tree where clusters at one level are merged into clusters at the next

higher level [113]. There are two reasons to choose a hierarchical clustering algorithm

instead of other methods. First, a hierarchical clustering method fits in our problem setting

perfectly. One essential function of the proposed work is comparison of program behaviors

based on system calls. It looks for similarity of two behaviors instead of determining the

equation of them. Hierarchical clustering algorithm takes the input of distance vector of

objects and returns similar objects in clusters. There are other data-mining approaches

such as maximal frequent item sets mining [114] and k-means cluster analysis [113]. The

frequent item set mining algorithm is more suitable for a data set with distinct items. There

is no overlap (or similarity) between any pair of distinct items. This algorithm usually looks

for the frequency of unique items occurring in a data set or the frequency of a sequence of

unique item sets. The k-means clustering algorithm is a partitioning method and it outputs

a single level of clusters [113]. Irrelevant objects can still be grouped into one cluster [113].

Second, hierarchical clustering allows users to decide what level or scale of clustering is

most appropriate in their applications. Therefore, it enables a customized configuration. In

this proposed work, the variable cutoff is used. The value of cutoff decides the scale of

clustering of similar sub-patterns.

Hierarchical Clustering

Let a coarse-grained cluster which is generated during the pre-clustering phase be

denoted C and the corresponding similarity score matrix be denoted S. The similarity of

a pair of sub-patterns i and j in C can be accessed through the similarity score matrix S.

The corresponding entry is denoted Si,j .

The objective of hierarchical clustering in this work is to find the groups of similar

sub-patterns in C. A group of similar sub-patterns in C is a fine-grained cluster and is

denoted F . The kth such group is denoted Fk. We choose and implement the average-
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linkage agglomerative hierarchical clustering algorithm [115]. There are single-linkage and

complete-linkage clustering algorithms, which evaluate cluster quality based on a single

pair of data items (sub-patterns). The average-linkage clustering algorithm, in contrast,

evaluates cluster quality based on all similarities among data items. It can avoid the pitfalls

of the single-linkage and complete-linkage algorithms [115]. (A detailed introduction to

hierarchical clustering algorithms can be found at [115].)

A clustering process starts to find pairs of sub-patterns i and j in C that have

the shortest distances measured as 1 - Si,j and merges them into binary clusters. It then

iteratively merges these newly formed clusters or new sub-patterns to form bigger clusters.

Each time, a pair of clusters, or a pair of sub-patterns, or a pair of a cluster and a sub-

pattern, are merged when they have the shortest distance among all pairs of none merged

clusters and single sub-patterns. The distance between two clusters is a group distance

which is measured as the average of distances among all pairs of data items, where each

pair is made up of one data item from each group. This iterative clustering process stops

when the shortest distance of all pairs of none merged clusters and single sub-patterns is

greater than a threshold, or there is only one fine-grained cluster that remains. We use the

variable cutoff to represent this threshold and term it the clustering parameter , which

is customizable.

Upon the conclusion of the clustering process, there are single non-clustered sub-

patterns and a set of fine-grained clusters (F ) which consist of similar sub-patterns. Only

these fine-grained clusters can be used for constructing the common behavior pattern. Single

non-clustered sub-patterns are discarded.

If a fine-grained cluster Fk is eventually chosen for constructing the common be-

havior pattern, a sub-pattern i in Fk, denoted Uk
i , will be chosen to represent Fk. The

representative sub-pattern Uk
i has the minimum average of distances with the other sub-

patterns in Fk.

Constructing Common Behavior Patterns.

To construct the common behavior pattern of the sample malware instances, pop-

ular fine-grained clusters are found first, and then the representative sub-patterns of these

fine-grained clusters are used to compose the common behavior pattern.

Each fine-grained cluster has a popularity. Popular fine-grained clusters are found
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if the values of their popularity exceed a threshold. We use the variable po to represent

this threshold and term it the popularity parameter . The popularity parameter po is

customizable.

Taking the mined fine-grained clusters and the original semantic program patterns

as input, the popularity of a fine-grained cluster is measured as the number of unique

program patterns which contain the sub-patterns of the fine-grained cluster, compared to

the total number of the program patterns.

Malware Detection Using a Common Behavior Pattern

This subsection briefly discusses how a common behavior pattern is used to detect

a malware instance. Such detection is a pattern matching process whose approach is the

same as the pattern matching approach of [111], except that the calculation of a pattern

matching score is slightly different.

A code fragment k is given, where k may be a malware instance. The pattern for

k has been computed by the static analyzer and is represented as P k = {Uk
1 , ..., Uk

Nk
},

where the ith sub-pattern is represented as Uk
i . A common behavior pattern is given and is

represented as P l = {U l
1, ..., U l

Nl
}.

To recapitulate, a pattern matching of P k and P l is a one-to-one assignment from

the set of sub-patterns of P k to the set of sub-patterns of P l. Among all possible matchings,

we find the maximum weighted matching which is one that maximizes the sum of the

similarity scores of the pairs of sub-patterns that are matched.

M(P k, P l) =

∑

〈Uk
i ,U l

j〉∈W

score(Uk
i , U l

j)

Nl
(5.1)

Our technique uses Formula 5.1 to calculate the value or score produced by a

maximum weighted matching W . Formula 5.1 is slightly different from Formula 4.1 in

Chapter 4. In a calculation using Formula 5.1, the value or score produced by W is still

equal to the mean of the similarity scores of pairs of sub-patterns that are present in that

matching. However, the denominator is Nl instead of max(Nk, Nl). The justification is

that the detection of a malware instance using a common behavior pattern is an estimation

of how much the given common behavior pattern is matched to the malware instance.
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In the next section, a set of experiments are described to evaluate the proposed

work.

5.3 Evaluation

A set of experiments on real world malware and benign executables were performed

to evaluate the proposed approach.

5.3.1 Data Collection

A total of 1234 bot programs were obtained from Cyber-TA project’s website

[18] and Jhu bot research project [112]. These programs were detected as malicious bot

programs by Symantec anti-virus software [116]. These programs include different types of

bot programs like spybot, ircbot, ircbot.gen, linkbot, gobot, etc., as indicated by the

Symantec anti-virus tool [116]. Different brands of anti-virus software may have different

names or classifications. (For example, jrbot is indicated as ircbot.gen by the Symantec

anti-virus tool [116].) Among these bot programs, 340 programs could not be processed

due to file access permission being denied. The blocking of file access is a self-defense

technique as pointed out by [1]. In addition, there are 24 programs that have corrupted

program headers and 600 programs that have obfuscated program entries. These include

basically three types - the program entry virtual address is 0, it is located outside of code

section, or the calculated code size is 0. These 600 programs can be accessed and processed.

However, the results are expected to be inaccurate. In this sense, more advanced disassembly

techniques need to be investigated. The other 270 programs could be processed. However,

only 167 of them have non-zero patterns. The reasons for the bot programs having zero-

patterns will be investigated. Our suspicion is that they use encryption. This technique

does not handle encryption or any self-modifying code.

Twenty five bot programs were chosen as the data set for common pattern gener-

ation. The quality of generated patterns was investigated, and the results will be presented

in the next subsection. Two set of tests were performed. The first test was to evaluate the

detection capability of a generated common malware pattern to identify known or new mal-

ware instances that are from the same or similar malware categories. The second test was to

to evaluate the true false positive rate, or how often the generated common behavior falsely

flags benign programs as malicious. In the first test, an additional 25 bot programs were
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used. Therefore, a total of 50 bot programs were used for detection capability evaluation.

In the second test, 313 benign windows programs and applications that are processable ex-

ecutables were used as the test data set. The 313 benign programs include executables (in

PE format) under C: \ windows \system32 directory of our test machine running Windows

XP professional and application executables.

Out of the 167 processable bot programs, the 25 programs are probably the maxi-

mum processable data set for pattern generation. This is due to a system restriction on file

size. During the pattern generation process using 167 processable bot programs, the files of

similarity scores for several coarse-grained clusters reached 4G bytes. No further similarity

score values could be inserted to a file that exceeds 4G bytes. If we use a different data set

with the average pattern size being smaller, the size limit on the number of programs for

pattern generation could be higher.

5.3.2 Quality of Generic Pattern

A common behavior pattern is generated from the 25 bot binaries using the de-

scribed method. Then this common behavior pattern is applied to detect the 50 bot binaries

and 313 benign programs to evaluate its detection capability and false positive rate.

In total, 45 patterns were generated under different parameter configurations, us-

ing the described method. The pre-clustering approach followed Scheme 2. Two such

parameters were the clustering parameter cutoff and the popularity parameter po. The

parameter cutoff is used in hierarchical clustering process to determine the groups of sim-

ilar objects (sub-patterns). The distance of two sub-patterns in a fine-grained cluster is less

than the value of cutoff, or the similarity score value of two sub-patterns in a fine-grained

cluster is greater than 1 - the value of cutoff. The parameter po is used in the selection of

popular fine-grained clusters.

The 45 patterns were generated under different combinations of cutoff, whose

value was chosen from set {0.1, 0.2, 0.3, 0.4, 0.5}, and po, whose value was chosen from {0.1,

0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9}. Each generated pattern was compared to the tested data

sets of the 50 bot programs and the 313 benign executables in Windows PE format, using

the maximum weighted matching approach as discussed in the previous section. For each

comparison a similarity score was computed. Then the third parameter d was used. The

parameter d is called detection threshold parameter . If the value of a similarity score
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Figure 5.6: False positive rate for cutoff = 0.1.

is above the value of d, then the corresponding tested program was regarded as a successful

match to the generated pattern. Otherwise, it was not a successful match. Therefore, the

detection rate of a generated pattern was calculated as the number of successful matches

of the 50 bot programs to the generated pattern. The false positive rate of a generated

pattern was calculated as the number of successful matches of the 313 benign programs to

the generated pattern.

Figure 5.5 to Figure 5.14 plot the results. An optimized result, under a configura-

tion of cutoff =0.1, d =0.5, and po =0.4∼0.5, has a detection rate and false positive rate of

94% and 8.3% respectively. The second optimized result, under a configuration of cutoff

=0.2, d =0.6, and po =0.4, has a detection rate and false positive rate of 78% and 0.32%
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Figure 5.8: False positive rate for cutoff = 0.2.

respectively. An optimized result should have a maximal detection rate and a minimal false

positive rate.

The following is a simple description of how to find the parameter configuration

that produced the two optimized results in this experiment. A more general discussion is

presented in the next section. First, a target performance was set. In this experiment,

an optimized result was expected to have the false positive rate of less than 10% and the

detection rate of over 70%. Second, unqualified results were discarded from consideration.

This shrinks the search space. One quick examination of the results plotted in Figures 5.5 to

5.14 finds that only the results with detection threshold d no smaller than 0.5 could possibly

be optimized. Then the search starts. The basic idea is to find “locally” optimized results
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Figure 5.9: Detection rate for cutoff = 0.3.false positive rate (cutoff=0.3)false positive rate (cutoff=0.3)false positive rate (cutoff=0.3)false positive rate (cutoff=0.3)
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Figure 5.10: False positive rate for cutoff = 0.3.

and then compare these results to get the “globally” optimized ones. The local and global

scopes are relative concepts. A global scope of results includes the results that are generated

under all combinations of parameter configurations. A local scope of results refers to those

that are generated with at least one identical parameter configuration. If such a parameter

is x, then a local scope is based on x. In this example, a local scope is based on the

parameter cutoff. The initial search examined the local scope of results with cutoff=0.1,

which are plotted in Figure 5.5 and Figure 5.6. The qualified results in that scope are

shown in Figure 5.15. The locally optimized results and their configurations are shown as

the shadowed entries in Figure 5.15. The process repeated to examine the local scope of

results with cutoff=0.2, which are plotted in Figure 5.7 and Figure 5.8. Likewise, the
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Figure 5.11: Detection rate for cutoff = 0.4.false positive rate (cutoff=0.4)false positive rate (cutoff=0.4)false positive rate (cutoff=0.4)false positive rate (cutoff=0.4)
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Figure 5.12: False positive rate for cutoff = 0.4.

qualified results are shown in figure 5.16. The locally optimized results with cutoff being

0.2 and their configurations are shown as the shadowed entries in figure 5.16. Eventually,

among the five distinct locally optimized results which are shown as the shadowed entries

in Figure 5.15 and Figure 5.16, two optimized results were found. The detection rates and

false positive rates are 94%, 8.3%, and 78%, 0.32% respectively. The configurations are

cutoff =0.1, d =0.5, po =0.4∼0.5, and cutoff =0.2, d =0.6, po =0.4, respectively.

5.3.3 Comparison of the Three Pre-clustering Schemes

The three pre-clustering schemes as discussed in section 5.2.2 are now compared.

A similar experimental approach to the one as discussed in the previous subsection is taken.
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Figure 5.14: False positive rate for cutoff = 0.5.

The three pre-clustering schemes are compared under the configuration of cutoff =0.2 and

po =0.4. An optimized result was derived under this configuration in the experiment as

presented in the previous subsection. The data set that was used to generate common

behavior patterns is different from the one used in the previous experiment. The number

of the data items (i.e. the bot binaries) is reduced from 25 to 16. One reason for this

is due to the system restriction on file size that should not exceed 4G as explained in a

previous subsection. The other reason is that the use of pre-clustering Scheme 1 produces

unnecessary computations that quickly explode the files of similarity scores. Hence, with the

current implementation the number of the data items has to be reduced in order to compare

the effectiveness of the three pre-clustering schemes under the same test conditions. The
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detection threshold (d) popularity (po) detection rate (dr) false positive rate (fp)
0.5 0.4 94% 8.31%
0.5 0.5 94% 8.31%
0.6 0.2 78% 1.28%
0.6 0.6 78% 8.63%
0.6 0.7 82% 9.90%
0.7 0.7 76% 5.75%

Figure 5.15: Qualified results with cutoff=0.1 and their configurations. The entries for
locally optimized results are shadowed.

detection threshold (d) popularity (po) detection rate (dr) false positive rate (fp)
0.5 0.3 80% 8.95%
0.5 0.4 80% 8.31%
0.5 0.5 78% 7.67%
0.5 0.6 78% 7.67%
0.6 0.2 78% 2.24%
0.6 0.3 72% 0.64%
0.6 0.4 78% 0.32%
0.6 0.5 74% 0.32%
0.6 0.6 74% 0.32%
0.6 0.7 76% 6.39%
0.7 0.7 76% 0.64%
0.7 0.8 76% 5.75%
0.8 0.8 76% 5.75%

Figure 5.16: Qualified results with cutoff=0.2 and their configurations. The entries for
locally optimized results are shadowed.

comparison results are shown in Figure 5.17 and Figure 5.18. The optimized results using the

three pre-clustering schemes are achieved under d = 0.6 and d = 0.7. In either configuration,

the proposed method using the pre-clustering Scheme 2 produces better results in terms of

a higher detection rate and a lower false positive rate. As discussed in section 5.2.2, overly

generic or overly specific pre-clustering schemes could lead to poorer performance.

5.3.4 Comparison with our Previous Work

In this subsection, we compare the technique proposed in this chapter with our

previous work that is presented in Chapter 4. We first highlight the difference between the

two techniques and then introduce the experiment which was performed to quantify the

difference.

The technique presented in Chapter 4 addresses the problem of how to summarize

and compare program semantics between a pair of programs (or executables). A semantic

malware pattern generation and matching method was proposed in Chapter 4. This tech-
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Figure 5.18: False positive rate using the generated common pattern to test on 313 benign
executables.

nique can serve as a basis for the detection of metamorphic malware which has equivalent

or updated functionalities. This technique works by using one malware instance’s pattern

to detect the variants of that malware. However, this technique is not intended to detect

other malware instances from a totally different malware category, although sometimes it

is able to do so when the two different types of malware have behaviors in common.

In contrast, the technique presented in this chapter focuses on generalizing the

semantic pattern generation and matching approach. It aims to use a single common mal-

ware behavior pattern to detect an entire category of malware as well as those are from a

different category.

Therefore, the technique presented in this chapter can potentially result in great
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reduction in semantic pattern population for the detection of known and new malware

instances. We performed a new experiment to quantify this amount. In the previous

subsection, the experiment results show using one common behavior pattern which was

generated from 25 training bot programs can achieve 78% detection rate on the 50 testing

bot programs with the detection threshold d = 0.6.

For comparison, the new experiment measures the number of semantic program

patterns that are needed for the technique of Chapter 4 to achieve the same detection rate

(i.e., 78%) using the same data set (i.e., the 25 training bot programs and the 50 testing

bot programs) under the same testing condition (i.e., d = 0.6).

The experiment was performed as follows. First, for each of the 25 training bot

programs, a pattern was generated using the method presented in Chapter 4. Second, the

detection capability of each pattern was measured. For instance, we recorded the successful

matches between the pattern and the patterns of the 50 testing bot programs. Two patterns

are matched, or a pattern is detected by the other, if their similarity score is above the value

of d, which is 0.6. Third, we found the minimum number of patterns that can cumulatively

detect 78% of the 50 testing bot programs. Here are the findings. Using one pattern (the

best one) only 32% of the testing malware programs were detectable. Using two patterns

62% were detectable. Using three patterns 72% were detectable. Using four patterns 76%

were detectable. Once we used five patterns, the target detection rate 78% was achieved.

In real practice, there may be problems to measure the minimum number of patterns that

can cumulatively achieve a target detection rate. Then a solution is to find the average

situation. For instance, we can measure the detection rate of using x number of patterns

out of a total of n available patterns and calculate the average detection rate of using all

such combinations. The comparison result shown here is conservative. The average number

of patterns that are needed to achieve the same detection rate as that of using a common

behavior pattern under the same test condition should be higher than the minimum one.

To summarize, through the simple experimental comparison, the technique pre-

sented in this chapter results in about 80% reduction in semantic pattern population to

detect known and new malware instances.
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5.4 Discussion

5.4.1 Data Set Selection

There are practical issues in deploying the proposed work for the generation of good

quality malware patterns. The data set selection is one of them. If there are overwhelming

numbers of irrelevant samples in the training data set that is used for the generation of a

common pattern to detect new malware instances, the quality of the generated pattern is

expected to be much lower. These irrelevant samples are background “noise.” Data set

selection is a meaningful and open problem challenging many data-mining related research.

For different application domains, there could be context dependent solutions. A generic

popular solution to this problem is applying genetic algorithms [117] or evolutionary algo-

rithms with domain specific individual selection functions to improve the overall fitness of

the population. A recent paper has developed an evolutionary algorithm in the vulnerability

analysis testing domain [118]. For the present work, we can design domain specific genetic

algorithms to choose fitted data sets with the existing subpattern matching approach as the

basis of individual case selection. This, however, is left as our future work.

5.4.2 Optimized Configuration Selection

The second practical issue is how to configure multiple parameters to produce

an optimized result. Again, designing genetic algorithms is a possible solution. Genetic

algorithms are most commonly applied in multiparameter function optimization which can

be formulated as a search for an optimal value where the value is a complicated function

of some input parameters [117]. With regard to our specific problem, there is a simple

solution which can be described as objective performance directed parameters selection.

Regarding the pattern generation, there are two parameters - the clustering parameter

cutoff for determining the scope of a fine-grained cluster which holds similar sub-patterns,

and the popularity parameter po for choosing popular fine-grained clusters. There is also

the detection threshold parameter d.

To find an optimized configuration, two phases are involved including the pattern

generation, and pattern selection. The pattern generation phase creates patterns that could

be of good quality. The pattern selection phase performs the actual search within the set

of patterns to find the ones that produce optimized results in terms of maximal detection



88

rate and minimal false positive rate.

A set of patterns are generated first under different configurations of cutoff and

po. A pattern generated under the configuration of cutoff = i and po = j, is denoted Pi,j .

The detection rate and false positive rate of Pi,j with the detection threshold d = k are

denoted dri,j,k and fpi,j,k respectively. The values of cutoff, po, and d are recommended

to be selected from a finite set of floating numbers ranging from 0.1 to 0.9.

The problem of optimized configuration selection then can be formalized as a

search to find a pattern Pi,j such that dri,j,k is maximal and fpi,j,k is minimal, where i,j,

and k ∈ 0.1∼0.9. A pattern Pi1,j1 is an equal or better choice than pattern Pi2,j2 when their

detection rates (dri1,j1,k1 ≥ dri2,j2,k2) and their false positive rates (fpi1,j1,k1 ≤ fpi2,j2,k2)

show those relationships. However two patterns are incomparable when their detection

rates (dri1,j1,k1 > dri2,j2,k2) and their false positive rates (fpi1,j1,k1 > fpi2,j2,k2, or dri1,j1,k1

< dri2,j2,k2 and fpi1,j1,k1 < fpi2,j2,k2) show those relationships.

To minimize the number of incomparable patterns to find the optimized configura-

tion, a target performance can guide the selection. A generated pattern is considered valid

when the detection rate it produces is equal to or greater than the targeted detection rate,

and the false positive rate it produces is less than or equal to the targeted false positive

rate. An example to illustrate this general idea has been given in section 5.3.2.

5.4.3 Special Cases

The previous subsection discusses the impact of parameter configuration on the

quality of a generated pattern. This subsection discusses the impact of the nature of the

training data set on the quality of a generated pattern.

There are several special cases of the data set that is used for pattern generation.

The quality of a generated pattern is affected greatly by the nature of these data sets.

The data set consisting of totally irrelevant binaries

In this case, no matter how we choose to configure the three parameters, there

are expected to be no non-trivial patterns generated. For instance, a generated pattern

may consist of only one behavior that is common to the sample programs, i.e., a single call

to printf. However, the awareness of the fact that a generated pattern is trivial can be

achieved through the pattern selection procedure as described in the previous subsection.
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Upon the conclusion of a pattern selection, no optimized patterns could be found. Then a

better data set should be selected.

The data set consisting of completely functionally equivalent binaries

This special case resembles the application scenario of our second proposed work.

The generation of a pattern from the data set is actually the generation of a pattern of

metamorphic malware. No matter how we choose to configure the three parameters, a

generated pattern is expected to summarize the entire program behaviors of these binaries.

The false detection rate of a generated pattern will be very low, which is good. However,

the detection rate of a generated pattern on functionally similar binaries will be low, which

is not good.

The data set consisting of benign programs with embedded malicious functions

This case depicts a new application scenario of the proposed work. If the data

set consists of benign programs with common embedded malicious functions, the proposed

method works normally. As long as the embedded malicious functions have popular oc-

currence in the benign programs. The proposed method could still generate an accurate

common behavior patterns.

The data set consisting of malicious binaries that have common behaviors gen-

erated by popular software tools

These common behaviors are not necessary being “malicious”. They can also occur

in benign programs. One such case is that a lot of programs are developed using SDKs or

SDEs (e.g., MFC). These non-malicious behaviors of the malware samples can be found

to compose a common malicious behavior pattern. The “non-malicious” and “common”

behaviors shared by both malicious and benign programs will not result in a significant

reduction of the detection capability of the generated common malicious behavior pattern.

However, it would probably increase the true false positive rate.

A solution to this problem is to mine the common behavior of benign programs,

and remove that from use in malware analysis. This leaves to our future work.



90

5.4.4 Limitations

There are several limitations to the proposed work.

Limitation of static analysis

The first limitation stems from the limitations of static analysis. Malware self-

defense techniques can challenge and thwart the static analysis. There are several such

techniques as pointed out by an interesting article [1]. Some of them, including using

packed malware binaries and blocking access to files, are encountered in our experimental

evaluation. Other program obfuscation techniques like delicate system call obfuscation

are not handled by our static analyzer, but a solution has been proposed by A. Lakhotia

et al. [119]. Therefore, a more sophisticated technique, probably integrating different

approaches designed for specific obfuscation or behaviors, is needed to strengthen the state-

of-art malware analysis and defense.

Limitation of data-mining based approach

The second limitation stems from the data-mining approach whose accuracy de-

pends on the training data set. Theoretically, there is no formal method that is able

to determine the semantic equivalence of two abstract behaviors. This is an undecidable

problem. Therefore, it is always theoretically possible to confuse, bypass, or poison the

data-mining approach that is based on an approximated measurement or estimation of the

equivalence of program behaviors by exploiting its similarity evaluation algorithm. In the

current case, an attacker can insert junk functions or behaviors in each malware instance

in the sample malware pool to increase the percentage that these behaviors can be dis-

covered and included in a pattern. The attacker later produces new malware instances

without incorporating these junk behaviors. Therefore, the new malware instances will not

be matched to the generated pattern in the old training set.

Fundamentally, there is no solution to defeat this attack if we assume attackers can

control the training data set selection. However, there is a practical issue for the attacker

- how he can control or influence the data set choice. Furthermore, a mitigation approach

can be proposed, using as large and diversified while related malware data set as possible

to lower the percentage of the background noise. In addition, research to develop better

techniques (i.e, combining dynamic analysis) to recognize the necessary conditions for the
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malware to succeed can help develop a more accurate pattern [120]. This is left as an open

question.

5.5 Summary

This chapter presented an automated approach to discover a common behavior

pattern from a set of malware for detection of metamorphic malware or new malware in-

stances. This approach can improve the applicability of a semantic malware detector [111].

The proposed approach combines static analysis and data-mining techniques. It has been

prototyped and evaluated using real world malicious bot software and benign Windows

programs.

Through the experimental comparison with the metamorphic malware detector,

this method results in an about 80% reduction in semantic pattern population to detect

known and new malware instances. It is more robust to a junk behavior pollution attack

than the malware detector is. A set of experiments was performed to test the quality of the

common behavior patterns which were generated with different parameter configurations.

Two criteria were used to evaluate the quality of a common behavior pattern. One was

the detection capability of the generated common behavior pattern to identify known or

new malware instances that are from the same or similar malware categories. The other

was the true false positive rate, or how often the generated common behavior falsely flags

benign programs as malicious. Two optimized common behavior patterns were obtained.

The corresponding detection rates and true false positive rates are 94%, 8.3%, and 78%,

0.32% respectively.

Future work will study how to automatically choose suitable training sets to im-

prove the common behavior pattern generation approach. It will further study to how to

remove the common benign program behavior from use in the malware analysis. Moreover,

it will study how to improve the program behavior extraction process that is the key to the

work proposed in this chapter. More advanced techniques will be researched in addition to

the static analysis used in this work.
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Chapter 6

Conclusion and Future Work

6.1 Conclusion

This dissertation addresses the problems of how to detect polymorphic and meta-

morphic malicious software. The attacks caused by these malware cause serious problems

and they can evade anti-malware software. This dissertation makes the following three

contributions:

1. A new approach for recognizing polymorphic exploits that are encrypted and that self-

decrypt before launching the attacks in network traffic: Remotely-launched exploits are

a common way for attackers to intrude into vulnerable systems and gain control of

them. As remote exploitation techniques evolve, polymorphic remote exploits that are

encrypted and that self-decrypt before launching the intrusion pose a great challenge

to existing malware detection techniques, partly due to the non-obvious starting loca-

tion of the exploit code in the network payload. To detect them, the proposed method

scans network traffic for the presence of a decryption routine which is characteristic

of such exploits. It does this by combining static analysis and instruction emulation

techniques. The proposed method outperforms previous proposals [27, 28, 34, 29, 30]

in its capability to identify more precisely the starting location of the decryption rou-

tine, with fewer assumptions. The method also can identify the decryption routine

even if self-modifying code has been used to conceal its presence. This method has

been implemented and tested on current polymorphic exploits, including ones gener-

ated by state-of-the-art polymorphic engines. All exploits have been detected (i.e., a
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100% detection rate), including those for which the decryption routine is dynamically

coded, or self-modifying. The false positive rate is close to 0%. Running time is

approximately linear in the size of the network payload being analyzed.

2. A new approach for recognizing metamorphic malware: Metamorphic malware uses

various code obfuscation techniques to transform its program image from its early

version. It has equivalent or updated functionalities and it can easily evade the con-

ventional signature based anti-malware software. We propose a new approach that

uses fully automated static analysis of executables to summarize and compare pro-

gram semantics, based primarily on the pattern of library or system functions which

are called. This method has been prototyped and evaluated using randomized bench-

mark programs, instances of known malware program variants, and utility software

available in multiple releases. The evaluation results demonstrate three important

capabilities of the proposed method: (a) it has great promises in identifying meta-

morphic variants of common malware: the measured similarity score of an original

benchmark program and its randomized version in most cases achieves a value of .95

or greater; (b) it distinguishes easily between programs that are not related and, (c)

it can identify and detect program variations, or code reuse: the measured similarity

scores of different releases of the GNU binutil programs can achieve .75 or better. Such

variations can be due to insertion of malware (such as viruses) into the executable of

a host program or program revision.

3. An automated approach that generates common malware behavior patterns for rec-

ognizing metamorphic malware or new malware instances: It is a challenging and

non-trivial problem to effectively apply a metamorphic malware detector like the sec-

ond work of this dissertation. Given the overwhelming number of malware types and

the malware mutants, it would have had to generate a semantic pattern for each type

of malware mutants. This would be a heavy burden for maintenance. We propose

an automated approach to generate common malware behavior patterns for detection

of metamorphic malware or new malware instances. This method combines static

analysis and data-mining techniques. This method has been prototyped and evalu-

ated on real world malicious bot software and benign Windows programs. Through

the experimental comparison with the metamorphic malware detector, this method

results in an about 80% reduction in semantic pattern population to detect known
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and new malware instances. It is more robust to a junk behavior pollution attack

than the malware detector is. A set of experiments was performed to test the qual-

ity of the common behavior patterns which were generated with different parameter

configurations. Two optimized common behavior patterns were obtained. The corre-

sponding detection rates and true false positive rates are 94%, 8.3%, and 78%, 0.32%

respectively.

6.2 Future Work

Our future work will address the limitations of the three works proposed in this

dissertation.

1. Study new techniques to detect new polymorphic malware attacks: There are ways that

the proposed method can be bypassed such as using lengthy loops or using running-

time-environment related values in a polymorphic exploit. To do so, attackers need

to carefully craft their exploit code. Nevertheless, it is worth further study of new

techniques to detect these polymorphic exploits. We will focus on generalizing the

method for less obvious sequences of byte decoding.

2. Study new techniques to enhance the accuracy of static analysis: Static analysis is

the basis of the three works proposed in this dissertation. In particular, it is the key

to successfully characterizing program behaviors for metamorphic malware detection.

Therefore, it is important to enhance its accuracy. Here we have several ideas to

improve our static analysis approach that characterizes program behaviors based on

system calls. (There could be same or similar ideas that have been proposed. We

need to investigate them.)

• Combine localized dynamic analysis: Many techniques can thwart static anal-

ysis such as using self-modifying code or indirect control transfer instructions.

Making obfuscated system calls is a technique that specifically bypass our static

analysis approach. Using dynamic analysis techniques can address these prob-

lems. For instance, we can design techniques to “locally” emulate instruction

execution to deal with self-contained behaviors such as self-modifying and the

obfuscated system calls. Static analysis can be used to develop information to

determine a “local” scope for a round of emulated instruction execution.
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• Incorporating more types of system call parameters into pattern generation: This

will improve the accuracy of pattern generation. Besides the target address of

a system call, the function argument(s) of a system call could also be used in

pattern generation. The information on what function argument(s) a system call

is using can possibly be obtained in two ways: 1) from system call specifications;

2) from instruction compilation heuristics: a parameter is usually passed through

specific registers, i.e., eax.

• Investigate new approaches that characterize malicious program behaviors beside

the system call based ones: Looping structure for processing various control and

commands in malicious bot binaries is a characteristic behavior of bot software.

We will study new techniques to automatically learn what instruction sequences

can be characteristic of a particular malware type.

3. Address the deployment issues of the third proposed work : How to choose a suitable

training set is a practical issue to a data mining based research. We will study

algorithms that automatically choose suitable training sets to improve the common

behavior pattern generation approach. According to [117], studying genetic algorithms

with our domain specific individual selection function will be a good direction. We

will also study to how to remove common benign program behavior from use in the

malware analysis.
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Appendix A

Appendix

A.1 Disassembly of the Self-Modifying Decryption Routine

for Alpha2 Encoder

In this section, the disassembly result of the self-modifying decryption routine for

Alpha2 encoder is provided. The underlined instructions in figure A.1 (b) are the seeding

instruction of the GetPC code, the memory-writing instruction for decrypting the encoded

payload and the instruction for updating the address of encoded bytes. The underlined

bytes in (a) and (b) highlight the contrast between modified instructions before and after

execution.

A.2 Binary Code Analysis

In this section, the relevant background in the present thesis work is briefly intro-

duced in the order of instruction format, instruction operands and types, and static program

analysis.

Instruction Format Many binary code analysis techniques involve instruction

disassembly from its binary representation. Figure A.2 shows the general instruction format

for all Intel Architecture instruction encodings [2]. “Instructions consist of optional instruc-

tion prefixes (in any order), one or two primary opcode bytes, an addressing-form specifier

(if required) consisting of the ModR/M byte and sometimes the SIB (Scale-Index-Base)

byte, a displacement (if required), and an immediate data field (if required). [2]” The length

of an instruction depends on its opcode as well as the directives indicated by its prefixes,
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0000    eb 03                jmp 0005

0002    59                     pop ecx       

0003    eb 05                jmp 000A

0005    e8 f8 ff ff ff      call 0002

000A    49                     dec ecx

000B   49                     dec ecx

000C   49                      dec ecx

000D   49                     dec ecx

000E   49                     dec ecx

000F   49                     dec ecx

0010   49                     dec ecx

0011    49                     dec ecx

0012    49                     dec ecx

0013    49                     dec ecx

0014    48                     dec eax

0015    49                     dec ecx

0016    49                     dec ecx

0017    49                     dec ecx

0018    49                     dec ecx

0019    49                     dec ecx

001A    49                     dec ecx

001B   49                     dec ecx

001C    51                     push ecx

001D    5a                     pop edx

001E    6a  46               push 46

0020    58                      pop eax

0021    30 42 31           xor [edx+31], al

0024    50                     push eax

0025    41                     inc ecx

0026    42                     inc edx

0027    6b 42 41 56 imul eax, [edx+41],56

002B    42                     inc edx

002C    32 42 41           xor al, [edx+41]

002F   32 41 41           xor al, [ecx+41]

0032    30 41 41          xor [ecx+41], al

0035    58                    pop eax

0036    50                    push eax

0037    38 42 42          cmp [edx+42],al

003A    75 5a               jne 0096

003C    49                    dec ecx

….       <encrypted payload>

0000    eb 03                jmp 0005

0002    59                     pop ecx   (ecx=000A)    

0003    eb 05                jmp 000A

0005    e8 f8 ff ff ff      call 0002

000A    49                     dec ecx

000B   49                     dec ecx

000C   49                      dec ecx

000D   49                     dec ecx

000E   49                     dec ecx

000F   49                     dec ecx

0010   49                     dec ecx

0011    49                     dec ecx

0012    49                     dec ecx

0013    49                     dec ecx

0014    48                     dec eax

0015    49                     dec ecx

0016    49                     dec ecx

0017    49                     dec ecx

0018    49                     dec ecx

0019    49                     dec ecx

001A    49                     dec ecx

001B   49                     dec ecx

001C    51                     push ecx

001D    5a                     pop edx 

001E    6a  46               push 46

0020    58                      pop eax

0021    30 42 31           xor [edx+31], al

0024    50                     push eax

0025    41                     inc ecx

0026    42                     inc edx

0027    6b 42 41 10 imul eax, [edx+41],10

002B    42                     inc edx

002C    32 42 41           xor al, [edx+41]

002F   32 41 41           xor al, [ecx+41]

0032    30 41 41          xor [ecx+41], al

0035    58                    pop eax

0036    50                    push eax

0037    38 42 42          cmp [edx+42],al

003A    75 e9 jne 0025

003C    49                    dec ecx

….       <encrypted payload>

(a) (b)

Figure A.1: Disassembly of self-modifying decryption routine for Alpha2 encoder. a) Before
execution b) After execution
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Figure A.2: Intel Architecture Instruction Format [2].

ModR/M and SIB bytes when applicable. The following description is based on the in-

struction manual [2]. Primary opcode can contain some smaller encoding fields which define

the direction of operation, the size of displacement, the register encoding, condition codes,

or sign extension. An additional 3-bit opcode field is sometimes included in the ModR/M

byte which specifies how an operand in memory that is referenced by the instruction is

addressed and contains 3 fields. The Mod field along with the R/M field forms 32 possible

values, 8 general purpose registers and 24 addressing modes. The R/M field specifies a

register as an operand or an addressing mode. The Reg/Opcode field specifies either a

register as an operand or three additional bits of opcode, depending on the primary code.

Sometimes a second addressing byte, the SIB byte is used to fully specify the addressing

form and is required through certain encodings of the ModR/M byte. For more detail on

the instruction format, types, and semantics, please refer to [2].

Instruction operands and types An operand of an instruction can be a register

or a memory location specified by one or several combination of registers or an immediate

data. Not all CPU registers can be explicitly referenced as operands in the instruction en-

coding. The Mod and R/M fields of the ModR/M byte can specify the general-purpose reg-

isters, the MMXTX technology register MM0, or SIMD floating-point register XMM0.

The common Intel Architecture 32-bit registers are listed as follows. The instruction pointer

register can not be directly referenced by instruction encoding.

• General Purpose Registers : EAX (AH,AL), EBX (BH,BL), ECX (CH,CL), EDX (DH,DL)

• Pointer and Index Registers : ESP, EBP, ESI, EDI

• Segment Registers : CS, DS, ES, SS, FS, GS
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• Instruction Pointer : IP

• Flag Register : of, df, if, tf, sf, zf etc.

According to [121], all 8086 Intel instructions are divided into six categories ac-

cording to their function:

• Data Transfer Instructions : mov, pop, push, xchg, in, out, lds, lea, lahf,

popf, pushf, etc.

• Arithmetic Instructions : aaa, add, inc, cmp, dec, neg, sbb, sub, imul, mul,

div, idiv, cbw, etc.

• Logic Instructions : add, not, or, test, xor, rcl, rcr, sar, shl, shr, etc.

• Flow-control Instructions: call, jmp, ret, retn, retf, int, into, loop, loope,

loopne and jcc (a set of condition jump instructions) , etc.

• Processor Control Instructions: clc, sti, stc, esc, hlt, lock, wait, nop

• String Instructions : lods, movs, stos, cmps, cmpsw, scas, rep, repe, etc.

In our implementation, we add two more categories. The first additional category contains

the floating-point instructions or rarely used instructions such as mmx instructions and zero

effect instructions. A zero effect instruction means that the instruction has no significant

effect on the control flow or data flow of the program. This type of instruction includes nop

and cmp etc. Someone would argue that a cmp instruction will affect a program’s control

flow since the condition evaluated by the cmp instruction will decide the branch taken

by a control transfer instruction. In our analysis, we simplify the processing of branch

condition evaluation and always generate two branches for the conditional control transfer

instructions jcc. The second additional category contains a special set of instructions xchg,

cmpxchg which is a conditional exchange instruction, and xadd which is an exchange and

add instruction.

Static program analysis. We reference the concepts of static program analysis

from an advanced compiler textbook [96].

• Control Flow Analysis: A control flow graph is normally constructed to achieve a

global understanding of how program transfers control within procedures. A control



113

flow graph consists of basic blocks of code of the program and edges connecting these

basic blocks. An edge stands for a control transfer between the two connected basic

blocks.

• Basic Block. A basic block is a sequence of code with only one entrance at the

beginning and only one exit at the end.

• Data Flow Analysis: A data flow analysis of a program is a characterization of how

it manipulates the data.

• Reaching Definition: “A definition is an assignment of some value to a variable. A

particular definition of a variable is said to reach a given point in a procedure if there

is an execution path from the definition to that point such that the variable may have,

at that point, the value assigned by the definition. [96]” A definition is killed at a

particular point if the variable is redefined at that point.

• Dependence: “A dependence between two statements in a program is a relation that

constrains their execution order. A control dependence is a constraint that arise from

the control flow of the program. A data dependence is a constraint that arises from

the flow of data between statements. [96]” There are four kinds of data dependence.

Figure A.3 shows an example reflecting these four kinds dependence. First, a flow

dependence 〈S1, S2〉, is that the former (S1) sets a value (eax) that the latter (S2)

uses. Second, an anti-dependence 〈S2, S3〉, is that the former (S2) uses some variable

(eax)’s value that the latter (S3) sets. Third, an output dependence 〈S3, S4〉, is

when both statements (S3, S4) set the value of some variable (eax). The last is

input dependence 〈S2, S5〉, in which both statements (S2, S5) read the value of some

variable (eax). “An input dependence does not constrain the execution order of the

two statements. [96]”

• Copy Propagation: It “is a transformation that, given an assignment x ← y for some

variables x and y, replaces later uses of x with uses of y, as long as intervening

instructions have not changed the value of either x or y. [96]”
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-------------------------
S1 pop eax
S2 call [eax]
S3 add eax, 3
S4 xor eax, eax
S5 mov ecx, eax
-------------------------

Figure A.3: Example of control and data dependence in assembly code

A.3 Code Obfuscation

Acknowledgement. The following parts are from the spring CSC591R class

term paper which was a joint work with Young June Pyun.

Code obfuscation is a transformation that does not change the behaviors of the

original program and hence retains the core functionalities. It changes the existing code or

generates new behaviors without affecting the overall result of the original program [122].

Code obfuscation is mainly used to generate metamorphic versions of malicious code, such as

worms and viruses that are intended to subvert detection systems using signatures [26, 56].

It can also be used to protect software content from malicious reverse engineering [43].

Although code obfuscation has been proven to be computationally bounded and thus cannot

completely hide the malicious behavior [123], some techniques are potentially plausible due

to their simplicity and efficacy [56]. Some common code obfuscation techniques are listed

below and the corresponding examples are appended in the end.

Register Reassignment. Code obfuscation by means of register reassignment

replaces usage of one register with another within a specific live scope. It does nothing but

exchange register names and will not affect program behavior. There is no real obfuscatory

value gained other then avoiding naive signature matching detection systems.

Dead-Code/Junk-Code Insertion. Dead-code or junk-code insertion is an-

other code obfuscation technique that adds code to a program without affecting the original

functionality. This includes nop instruction, dead-code, and junk-code insertion. Dead-

codes are a sequence of instructions that cancel out, whereas junk-codes are irrelevant

instructions that do not affect the intended result of the program. The objective of this

obfuscation is to disguise sophisticated signature matching detection systems.
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Code Transposition. Code transposition permutes the order of the instructions

in such a way that maintains the original program flow. It includes random reordering

of instructions with unconditional branches and swapping of two sequences of instructions

that are independent. The objective of this method is to transform the original program

image into an unexpected instruction order intended to fool the detection systems relying

on fixed patterns of instruction orders.

Instruction Substitution. Instruction substitution replaces an instruction se-

quence with one or more semantically equivalent instructions. This technique usually re-

quires a pre-generated dictionary of equivalent instruction sequences for implementation.
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                                          Obfuscated code:

  Original code                 register reassignment

------------------------ -------------------------

push   10h                          push   10h

lea       eax, [ebp-50h]       lea       edx, [ebp-50h]

push   eax                          push    edx

xor      ecx, ecx                  xor       ebx, ebx

push    ecx                         push     ebx

xor      cx, 178h                 xor       bx, 178h

push   ecx                          push     ebx

lea      eax, [ebp+3]           lea        edx, [ebp+3]

push   eax                          push    edx

mov    eax, [ebp-54h]       mov     edx, [ebp-54h]

push   eax                          push    edx

call     esi                            call      esi

------------------------- -------------------------

Figure A.4: Example of code obfuscation with register reassignment.

                                         Obfuscated code:                     Obfuscated code:

    Original code                 nop insertion                         dead-/junk-code insertion

------------------------- ------------------------- -------------------------------

mov  eax, [ebp-4Ch]         mov  eax, [ebp-4Ch]           mov  eax, [ebp-4Ch]

lea    ecx, [eax+eax*2]       lea    ecx, [eax+eax*2]        lea     ecx, [eax+eax*2]

lea    edx, [eax+ecx*4]       lea    edx, [eax+ecx*4]       lea     edx, [eax+ecx*4]

shl    edx, 4                         nop                                      add    ecx, eax <--junk

add  edx, eax                      shl    edx, 4                         shl     edx, 4

shl    edx, 8                         add   edx, eax                     add    edx, eax

sub   edx, eax                     nop                                      sub    ecx, 5 <--dead

lea    eax, [eax+edx*4]      shl     edx, 8                         add    ecx, 5 <--dead

add   eax, ebx                    sub    edx, eax                     shl      edx, 8

mov  [ebp-4Ch], eax         nop                                      sub    edx, eax

------------------------- lea     eax, [eax+edx*4]      lea     eax, [eax+edx*4]

                                           add    eax, ebx                    add    eax, ebx

                                           mov   [ebp-4Ch], eax         mov    [ebp-4Ch], eax

------------------------- -------------------------------

Figure A.5: Example of code obfuscation with nop, dead-code, and junk-code insertion.
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                                                Obfuscated code:                  Obfuscated code:

     Original code                instruction reordering           instruction swapping

------------------------------ -------------------------------- -------------------------------

call   dword ptr  [esi]             jmp    L1                               call   dword ptr  [esi]

call   eax                            L2:                                              call   eax

xor   ecx, ecx                           xor     ecx, 1010101h           xor    ecx, ecx

push eax                                  xor     ecx, 9B040103h        push   eax

                                                 push   ecx

xor    ecx, 1010101h                jmp    L3                             xor     ecx, 9B040103h

xor    ecx, 9B040103h      L1:                                              xor     ecx, 1010101h

push  ecx                                 call    dword ptr  [esi]         push   ecx

                                                 call    eax                             

lea     eax, [ebp-34h]               xor    ecx, ecx                     lea     eax, [ebp-34h]

push  eax                                 push  eax                            push  eax 

mov   eax, [ebp-40h]              jmp    L2                             mov   eax, [ebp-40h]

push  eax                          L3:                                             push  eax

call    dword ptr [esi]             lea     eax, [ebp-34h]          call     dword ptr [esi]

----------------------------- push  eax                            ----------------------------

                                                mov   eax, [ebp-40h]

                                                push  eax

                                                call    dword ptr [esi]

--------------------------------

Figure A.6: Example of code obfuscation with instruction reordering and instruction
swapping.

                                                                   Obfuscated code:

                      Original code                     instruction substitution

------------------------- -------------------------

                       call   dword ptr [esi]           call    dword ptr [esi]

                       call   eax                               call    eax

                       xor    ecx, ecx                       mov   ecx, 0

                       push eax                               sub    esp, 4

                                                                     mov  [esp], eax

                       xor    ecx, 1010101h            xor    ecx, 1010101h

                       xor    ecx, 9B040103h         xor    ecx, 9B040103h

                       push  ecx                              push   ecx

---------------------------- -------------------------

Figure A.7: Example of code obfuscation with instruction substitution.


